A Concept Category Construction

Dusko Pavlovic University of Hawaii

ongoing joint work with Dominic Hughes Apple Inc.

Logic Matters December 28, 2021

▲□▶▲□▶▲□▶▲□▶ □ のQで

Background Problem Approach Method Solution Architecture

CCA

D. Paylovic

Outline

Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions

CCA

D. Pavlovic

Background Problem Approach Method Solution Architecture

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Outline

Background: Mining concepts from data Formal Concept Analysis Latent Semantic Analysis

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions

CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Concept mining

	NPR	CNN	FOX	KHON
Alice	* * **	**	* * **	*
Bob	**	***	**	
Carol	**	*	****	
Dave	*	* * **	***	
Ed		**	****	**

D. Pavlovic Background FCA LSA Problem Approach Method Solution Architecture

A Recommender System mines concepts from data

CCA

Concept mining is the goal of data analysis

CCA

D. Pavlovic

Background		

FCA LSA

Problem

Approach

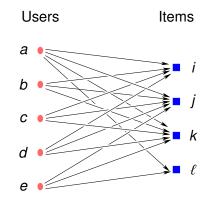
domain	\mathcal{J}	U	R	A _{iu}	Method
user preference	items	users	$\{0,, 5\}$	rating	Solution
text analysis	documents	terms	N	occurrence	Architecture
topic search	authorities	hubs	N	hyperlinks	
measurement	instances	quantities	R	outcome	
concept analysys	objects	attributes	{0,1}	property	
elections	candidates	voters	{1,, <i>n</i> }	preference	
market	producers	consumers	\mathbb{Z}	deliveries]
digital images	positions	pixels	[0, 1]	intensity]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Formal Concept Analysis

	NPR	CNN	FOX	KHON
Alice	*	*	*	*
Bob	*	*	*	
Carol	*	*	*	
Dave	*	*	*	
Ed		*	*	*

CCA

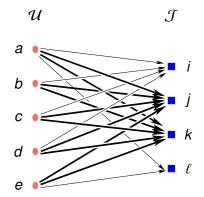

D. Pavlovic

Background FCA LSA Problem Approach Method Solution

Architecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Formal Concept Analysis

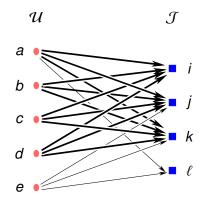


CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○

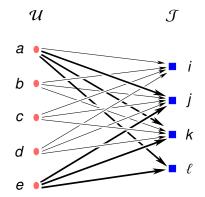


CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

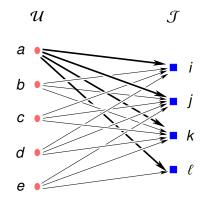


CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

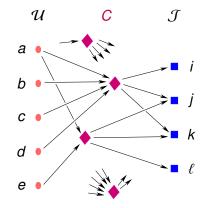


CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

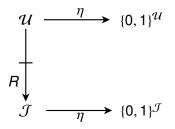

CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

Concept lattice


CCA

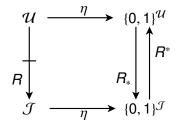
D. Pavlovic

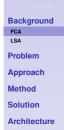
Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Powersets are ∪-completions

CCA

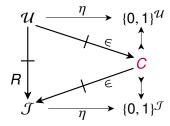

D. Pavlovic

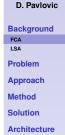

Background FCA LSA Problem Approach Method Solution Architecture

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

U- completions ~ Galois connections

 \sim


CCA


D. Pavlovic

$$R_*X = \bigcap_{x \in X} xR \quad \text{where } xR = \{y \in \mathcal{J} \mid xRy\}$$
$$R^*Y = \bigcap_{y \in Y} Ry \quad \text{where } Ry = \{x \in \mathcal{U} \mid xRy\}$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Fixpoints ~>> tight bicompletion ~>> concept lattice

$$xRy = \bigvee_{c \in C} x \in c_{\mathcal{U}} \land c_{\mathcal{J}} \ni y$$

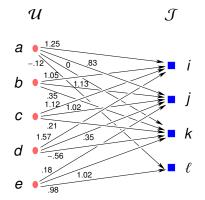
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

CCA

Latent Semantic Analysis

	а	b	С	d	е
i	1.25	1.05	1.12	1.57	
j	.83	1.13	1.02	.35	.18
k	0	.35	.21	56	1.02
l	12				.98

CCA

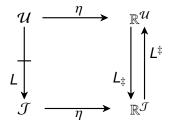

D. Pavlovic

Background FCA LSA Problem Approach Method Solution

Architecture

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Latent Semantic Analysis

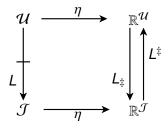

CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

・ロト・日本・日本・日本・日本・日本

Vector spaces are mix-completions


D. Pavlovic Background FCA LSA Problem

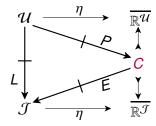
CCA

Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Matrices ~> adjoint operators

$$L_{\ddagger}\xi = \left(\sum_{j=1}^{n} L_{ij}\xi_{j}\right)_{i=1}^{m}$$
$$L^{\ddagger}v = \left(\sum_{i=1}^{m} v_{i}L_{ij}\right)_{j=1}^{n}$$


CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○

Eigenspaces vight completion viconcept space

$$L_{ij} = \sum_{\gamma \in C} \lambda_{\gamma} \cdot E_{i\gamma} \cdot P_{\gamma j}$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Background FCA LSA Problem Approach Method Solution

Architecture

CCA

D. Pavlovic

Spectrum vo dominant concepts

Concepts are the eigenspaces of $L_{\ddagger}L^{\ddagger}$ and $L^{\ddagger}L_{\ddagger}$, because

$$\begin{aligned} \gamma_{\mathcal{U}} &= L^{\ddagger} \gamma_{\mathcal{J}} \quad \wedge \quad L_{\ddagger} \gamma_{\mathcal{U}} = \gamma_{\mathcal{J}} \\ & \updownarrow \\ \gamma_{\mathcal{U}} &= L^{\ddagger} L_{\ddagger} \gamma_{\mathcal{U}} \quad \wedge \quad L_{\ddagger} L^{\ddagger} \gamma_{\mathcal{J}} = \gamma_{\mathcal{J}} \end{aligned}$$

▲日▶▲母▶▲ヨ▶▲ヨ▶ ヨーのQ@

CCA

D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

Singular Value Decomposition (SVD)

 $(1.25 \ 1.05 \ 1.12 \ 1.57)$

CCA


D. Pavlovic

Background FCA LSA Problem Approach Method Solution Architecture

$$\begin{pmatrix} 1.26 & 1.06 & 1.12 & 1.07 \\ .83 & 1.13 & 1.02 & .35 \\ 0 & .35 & .21 & -.56 \end{pmatrix} = \\ \begin{pmatrix} .83 & -.4 \\ .55 & .6 \\ 0 & .7 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} .5 & .5 & .5 & .5 \\ 0 & .5 & .3 & -.8 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Information flows through concepts

D. Pavlovic Background FCA LSA Problem Approach Method Solution

Architecture

・ロト・日本・ モー・ モー うへの

CCA

Outline

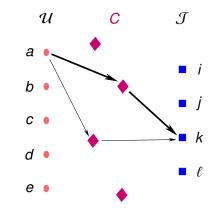
Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category


Architecture: Channels = adjunctions

CCA D. Pavlovic

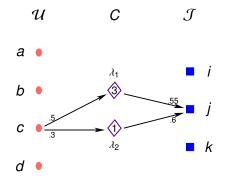
Background Problem Approach Method Solution Architecture

▲□▶▲□▶▲□▶▲□▶ ■ のへで

FCA: Concepts are the particles of meaning

D. Pavlovic Background Problem Approach Method

CCA

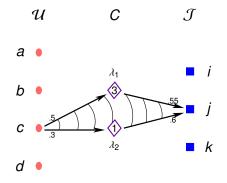

Solution

Architecture

 $aRk = \exists c \in C. a \in c \land c \ni k$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

LSA: Concept associations add up...


D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

 $L_{cj} = 3(.5 \times .55) + (.3 \times .6)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

... and create waves of meaning

Background Problem Approach Method Solution Architecture

CCA

D. Pavlovic

 $L_{cj} = 3(.5 \times .55) + (.3 \times .6)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

Wave mechanics is the theory of interference.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

The meaning of numbers

- L_{ui} = how much does the user u use the item i
- $P_{u\gamma}$ = how much of *u*'s usage is due to the concept γ
- $E_{\gamma i}$ = how much of the utility of *i* is due to the concept γ

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

The meaning of decomposition

If the data are normalized

$$L_{ui} = \Pr(u, i)$$
 $E_{\gamma i} = \Pr(\gamma, i)$ $P_{u\gamma} = \Pr(u, \gamma)$

then the decomposition $L_{ui} = \sum_{\gamma} (P_{u\gamma} \times E_{\gamma i})$ implies

$$\begin{aligned} \mathsf{Pr}(u,i) &= & \mathsf{Pr}(u,\gamma_1,i) &+ & \mathsf{Pr}(u,\gamma_2,i) \\ &= & \mathsf{Pr}(u,\gamma_1) \times \mathsf{Pr}(\gamma_1,i) &+ & \mathsf{Pr}(u,\gamma_2) \times \mathsf{Pr}(\gamma_2,i) \end{aligned}$$

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The meaning of decomposition

If the data are normalized

$$L_{ui} = \Pr(u, i)$$
 $E_{\gamma i} = \Pr(\gamma, i)$ $P_{u\gamma} = \Pr(u, \gamma)$

then the decomposition $L_{ui} = \sum_{\gamma} (P_{u\gamma} \times E_{\gamma i})$ implies

$$\begin{aligned} \mathsf{Pr}(u,i) &= & \mathsf{Pr}(u,\gamma_1,i) &+ & \mathsf{Pr}(u,\gamma_2,i) \\ &= & \mathsf{Pr}(u,\gamma_1) \times \mathsf{Pr}(\gamma_1,i) &+ & \mathsf{Pr}(u,\gamma_2) \times \mathsf{Pr}(\gamma_2,i) \end{aligned}$$

— which means that *u* and *i* are independent —

CCA

D. Pavlovic

Background Problem Approach Method Solution Architecture

D. Pavlovic Background Problem Approach Method Solution

Architecture

CCA

Recommendations invalidate their own independency assumption.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

Any existing dependencies are amplified.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Outline

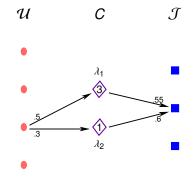
Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category


Architecture: Channels = adjunctions

D. Pavlovic Background Problem Approach Method Solution Architecture

▲□▶▲□▶▲□▶▲□▶ □ のQで

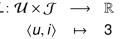
CCA

Concept associations add up

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

 $L_{ui} = \lambda_1 P_{u\gamma_1} E_{\gamma_1 i} + \lambda_2 P_{u\gamma_2} E_{\gamma_2 i}$


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

... to explain the correlation counts

U J 3 $L \colon \mathcal{U} \times \mathcal{J} \ \longrightarrow \ \mathbb{R}$

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

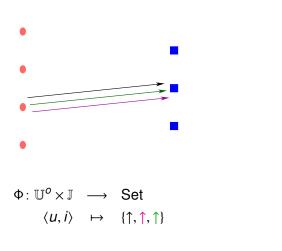
Idea: Record correlation events

U

CCA

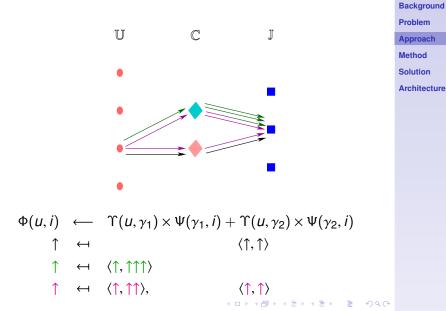
D. Pavlovic

Background

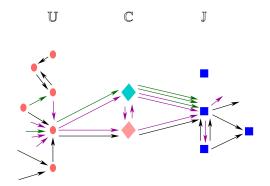

Problem

Approach

Method


Solution

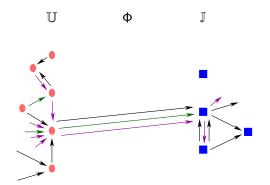
Architecture


J

Decomposition of set-matrices

CCA D. Pavlovic

Decomposition of categorical matrices

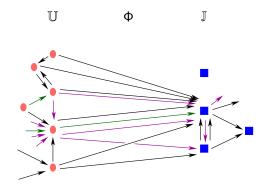

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

Known data correlations are captured in terms of morphisms

Categorical matrices

(a.k.a. distributors, profunctors, bimodules)


D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

Events can be identified by identifying the morphism actions

Categorical matrices

(a.k.a. distributors, profunctors, bimodules)

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

Data dependencies can be captured in terms of morphism compositions.

Categorical matrix

is a matrix of sets acted upon by categories:

$$\mathbb{U}(a,a') \times \Phi(a',k') \times \mathbb{J}(k',k) \stackrel{\Phi}{\longrightarrow} \Phi(a,k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

D. Pavlovic Background Problem Approach Method Solution Architecture

Categorical matrix composition

$$\mathbb{U}(u, u') \times \Upsilon(u', \gamma') \times \mathbb{C}(\gamma', \gamma) \xrightarrow{\Upsilon} \Upsilon(u, \gamma)$$
$$\mathbb{C}(\gamma, \gamma'') \times \Psi(\gamma'', i'') \times \mathbb{J}(i'', i) \xrightarrow{\Psi} \Psi(\gamma, i)$$

CCA

D. Pavlovic

Background Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Categorical matrix composition

CCA

D. Pavlovic

Background Problem

Approach

Method

Solution

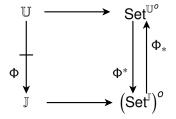
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Architecture

Categorical matrix composition

$$\mathbb{U}(u,u') \times \Upsilon(u',\gamma') \times \mathbb{C}(\gamma',\gamma) \xrightarrow{\Upsilon} \Upsilon(u,\gamma) \\
 \mathbb{C}(\gamma,\gamma'') \times \Psi(\gamma'',i'') \times \mathbb{J}(i'',i) \xrightarrow{\Psi} \Psi(\gamma,i) \\
 \overline{\mathbb{U}(u,u')} \times \Upsilon(u',\gamma) \times \Psi(\gamma,i') \times \mathbb{J}(i',i) \xrightarrow{\Upsilon;\Psi} \Upsilon(u,\gamma) \times \Psi(\gamma,i) \\
 \overline{\mathbb{U}(u,u')} \times \Phi(u',i') \times \mathbb{J}(i',i) \xrightarrow{\Phi} \Phi(u,i)$$

D. Pavlovic Background Problem Approach Method Solution Architecture

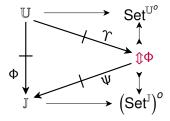

CCA

where

$$\Phi(u, i) = \int_{\gamma \in \mathbb{C}} \Upsilon(u, \gamma) \times E(\gamma, i)$$
$$= \left(\bigsqcup_{\gamma \in \mathbb{C}} \Upsilon(u, \gamma) \times E(\gamma, i) \right) \Big| \sim$$
for $\langle \nu, \psi \rangle \sim \exists u \exists j. \langle u^* \nu, j_* \psi \rangle$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Categorical matrices ~> adjoint functors


D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

$$\Phi^* X = \lim_{\longrightarrow} \Phi_u X_u \\
\Phi_* Y = \lim_{\longleftarrow} Y_i \Phi_i$$

・ロト・日本・日本・日本・日本・日本

Task: tight completion ~>> concept category

・ロト・日本・日本・日本・日本・日本

$$\Phi(u,i) = \int_{\gamma \in \mathcal{C}} \Upsilon(u,\gamma) \times \Psi(\gamma,i)$$

CCA D. Pavlovic

Background Problem Approach Method Solution Architecture Retrace the FCA workflow?

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Posetal matrix

CCA D. Pavlovic Background

Problem Approach Method Solution Architecture

is a lower-closed set $R \subseteq \mathcal{U} \times \mathcal{J}^o$, i.e.

$$u \stackrel{\mathcal{U}}{\leq} u' \wedge u' Ri' \wedge i' \stackrel{\mathcal{J}}{\leq} i \implies uRi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Posetal matrix composition

$$u \stackrel{\mathcal{U}}{\leq} u' \wedge u' P\gamma' \wedge \gamma' \stackrel{\mathcal{C}}{\leq} \gamma \implies u P\gamma$$

$$\gamma \stackrel{\mathcal{C}}{\leq} \gamma'' \wedge \gamma'' Ei'' \wedge i'' \stackrel{\mathcal{J}}{\leq} i \implies \gamma Ei$$

$$\frac{u \stackrel{\mathcal{U}}{\leq} u' \wedge u' P\gamma \wedge \gamma Ei' \wedge i' \stackrel{\mathcal{J}}{\leq} i \implies u P\gamma \wedge \gamma Ei}{u \stackrel{\mathcal{U}}{\leq} u' \wedge u' Ri' \wedge i' \stackrel{\mathcal{J}}{\leq} i \implies u Ri$$

where

$$uRi \iff \exists \gamma. uP\gamma \land \gamma Ei$$

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Architecture

Posetal matrix composition

$$u \stackrel{\mathcal{U}}{\leq} u' \wedge u' \in \gamma' \wedge \gamma' \subseteq \gamma \implies u \in \gamma$$

$$\gamma \subseteq \gamma'' \wedge \gamma'' \ni i'' \wedge i'' \stackrel{\mathcal{J}}{\leq} i \implies \gamma \ni i$$

$$\frac{u \stackrel{\mathcal{U}}{\leq} u' \wedge u' \in \gamma \wedge \gamma \ni i' \wedge i' \stackrel{\mathcal{J}}{\leq} i \implies u \in \gamma \wedge \gamma \ni i}{u \stackrel{\mathcal{U}}{\leq} u' \wedge u' Ri' \wedge i' \stackrel{\mathcal{J}}{\leq} i \implies uRi$$

where

$$uRi \iff \exists \gamma. \ u \in \gamma \land \gamma \ni i$$

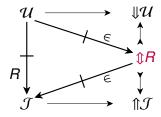
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

CCA

D. Pavlovic

Background

Problem

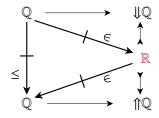

Approach

Method

Solution

Architecture

Tight completion vo concept lattice

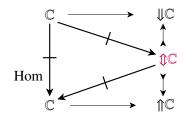

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

 $uRi = \exists \gamma \in C. \ u \in \gamma_{\downarrow} \land \gamma_{\uparrow} \ni i$

・ロト・日本・日本・日本・日本・日本

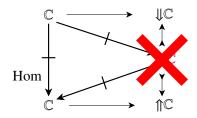
Dedekind completion vithe real continuum


$$q \stackrel{\mathbb{Q}}{\leq} q' = \exists r \in \mathbb{R}. \ q \in r_{\downarrow} \land r_{\uparrow} \ni q'$$

D. Pavlovic Background Problem Approach Method Solution Architecture

CCA

▲日▼▲□▼▲田▼▲田▼ 田 もののの


Dedekind completion of a category (Lambek 1964)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

D. Pavlovic Background Problem Approach Method Solution Architecture

Dedekind completion of a category doesn't exist (Isbell 1972)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

D. Pavlovic Background Problem Approach Method Solution Architecture

But we use and compute concept categories

CCA

D. Pavlovic Background Problem Approach Method Solution Architecture

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Upshot

- ► Background: Tight poset completions for ∨ ↔ ∧.
- **Task:** Tight category completions.
- Obstacle: No tight category completions for lim

New task: Tight category completions for tight limits im explicit explicit tight. D. Pavlovic Background Problem Approach Method Solution Architecture

Upshot

- ► Background: Tight poset completions for ∨ ↔ ∧.
- **Task:** Tight category completions.
- ► Obstacle: No tight category completions for lim

- New task: Tight category completions for tight limits im explicit explicit tight.
 - What are $\overrightarrow{\lim} \leftrightarrow \overrightarrow{\lim}$?

D. Pavlovic Background Problem Approach Method Solution Architecture

Outline

Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions

D. Pavlovic Background Problem Approach Method Solution Architecture

▲□▶▲□▶▲□▶▲□▶ □ のQで

Reminder: Meets and joins

 $\mathbb{P} \underbrace{\stackrel{\vee}{\underset{\nabla}{\stackrel{\perp}{\longrightarrow}}} \Downarrow \mathbb{P}}_{\mathbb{P}(\underset{\overline{\alpha}, y)}{\stackrel{\cong}{\longrightarrow}} \mathbb{P}(\overleftarrow{\alpha}, \nabla y)}$

$$\mathbb{P}(x,\varprojlim\overrightarrow{\beta})\cong \Uparrow\mathbb{P}(\vartriangle x,\overrightarrow{\beta})$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

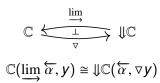
Architecture

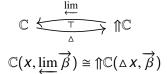
Reminder: Limits and colimits

CCA

D. Pavlovic

Background


Problem


Approach

Method

Solution

Architecture

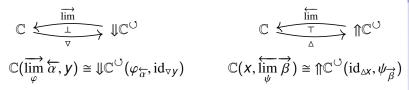
▲□▶▲□▶▲□▶▲□▶ □ のQで

Tight limits and colimits

CCA

D. Pavlovic

Background


Problem

Approach

Method

Solution

Architecture

where...

▲□▶▲□▶▲□▶▲□▶ □ のQで

Tight limits and colimits

where ${\Downarrow}{\mathbb{C}}^{\cup}$ is defined

$$\begin{split} |\Downarrow\mathbb{C}^{\cup}| &= \prod_{\overleftarrow{\alpha} \in \mathbb{U}\mathbb{C}} \left\{ \underbrace{\Delta\overset{\overleftarrow{\alpha}}{\alpha} \quad \overline{\nabla}\Delta\overset{\overleftarrow{\alpha}}{\alpha} \longrightarrow \alpha}_{\downarrow & \swarrow & \varphi & \swarrow & \varphi \\ \downarrow & \searrow & & \swarrow & \downarrow & \downarrow \\ \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \longrightarrow \varphi \longrightarrow & \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \quad \overline{\nabla}\Delta\overset{\overleftarrow{\alpha}}{\alpha} & \downarrow \\ \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \longrightarrow \varphi \longrightarrow & \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \quad \overline{\nabla}\Delta\overset{\overleftarrow{\alpha}}{\alpha} & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \longrightarrow & \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \xrightarrow{\Delta}\overset{f}{\beta} & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \longrightarrow & \underline{\Delta}\overset{\overleftarrow{\alpha}}{\beta} & \downarrow \\ \underline{\Delta}\overset{\overleftarrow{\alpha}}{\alpha} \longrightarrow & \underline{\Delta}\overset{\overleftarrow{\alpha}}{\beta} & \downarrow \\ \end{matrix} \right\}$$

and $\ \ \mathbb{C}^{\mathcal{O}}$ is dual.

CCA D. Pavlovic Background Problem Approach Method Solution Architecture

(Background proposition)

 $\mathbb{IIC}^{\mathbb{O}} \simeq \mathbb{C}^{\mathbb{N}}$

CCA

D. Pavlovic

Background Problem Approach Method Solution Architecture

follows from

Quotients in monadic programming: Projective algebras are equivalent to coalgebras. LICS 2017 or https://arxiv.org/abs/1701.07601

 $\mathbb{AC}^{\mathcal{O}} \simeq \mathbb{IC}^{\mathbb{Z}}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions

D. Pavlovic Background Problem Approach Method Solution

▲□▶▲□▶▲□▶▲□▶ □ のQで

Concept category

$$|\mathbb{D}\Phi| = \prod_{\substack{\overleftarrow{\alpha} \in \mathbb{U}\mathbb{U}^{\overleftarrow{\alpha}} \\ \overrightarrow{\alpha} \in \mathbb{D}^{\overrightarrow{\alpha}}}} \left\{ \overleftarrow{\alpha} \underbrace{\swarrow}_{j} \overleftarrow{g} \\ \overleftarrow{\gamma} \\$$

$$\mathbb{P}\Phi(\alpha,\beta) = \coprod_{\substack{\overleftarrow{f} \in \mathbb{U}\mathbb{U}^{\overleftarrow{\phi}}(\overleftarrow{\alpha},\overrightarrow{\beta})\\ \overrightarrow{f} \in \mathbb{H}\mathbb{U}^{\overrightarrow{\phi}}(\overrightarrow{\alpha},\overrightarrow{\beta})}} \begin{cases} \overleftarrow{x} \succ \overleftarrow{j_{\alpha}} \rightarrow \Phi_{*}\overrightarrow{x} - \overleftarrow{g_{\alpha}} \gg \overleftarrow{x}\\ | & | & |\\ \overrightarrow{f} & \Phi_{*}\overrightarrow{f} & \overleftarrow{f}\\ \downarrow & \downarrow & \downarrow\\ \overleftarrow{y} \succ \overleftarrow{j_{\beta}} \rightarrow \Phi_{*}\overrightarrow{y} - \overleftarrow{g_{\beta}} \gg \overleftarrow{y} \end{cases}$$

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Concept category

CCA

D. Pavlovic

Background Problem bach bd

ion

tecture

Background

Toshiki Kataoka and DP, Towards concept analysis in categories. CALCO 2015 or https://arxiv.org/abs/2004.07353

DP and P.M. Seidel, Quotients in monadic programming: Projective algebras are equivalent to coalgebras. LICS 2017 or https://arxiv.org/abs/1701.07601

 DP and D. Hughes, The nucleus of an adjunction and the Street monad on monads. https://arxiv.org/abs/2004.07353 D. Pavlovic

Background Problem Approach Method

Architecture

Outline

Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions

D. Pavlovic Background Problem Approach Method Solution Architecture

▲□▶▲□▶▲□▶▲□▶ □ のQで

Semantics

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Semantics in mathematics = category theory

CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

 \models Hom(Δ , \mathcal{M})

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Semantics is adjunction

CCA

D. Pavlovic

Background Problem

Approach

Method

Solution

Architecture

$Mnf(\mathcal{M}, R\Delta) \cong Grp(\mathcal{LM}, \Delta)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

- children: competent learning
- cryptanalysts: adversarial learning
- scientists: approximate learning

D. Pavlovic

Background

Problem

Approach

Method

Solution

▲日▶▲母▶▲ヨ▶▲ヨ▶ ヨーのQ@

Architecture

Sign is a process

CCA

D. Pavlovic

Background Problem Approach Method Solution Architecture

(ロト (個) (E) (E) (E) E のQの

Fast learners

CCA

D. Pavlovic

Background

Problem

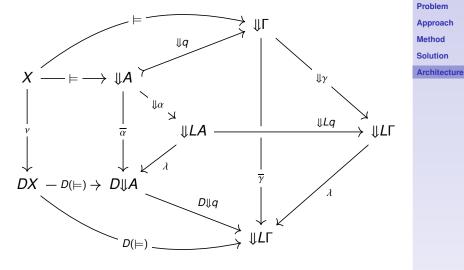
Approach

Method

Solution

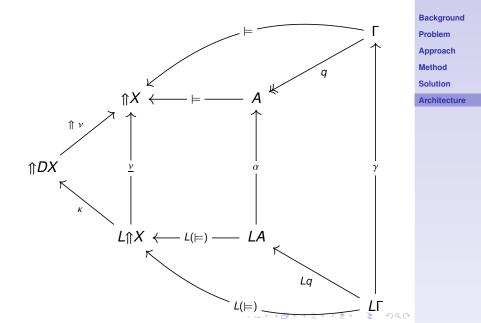
Architecture

▶ GPT-3, BERT: simulate the sign


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Meaning is a process

CCA



Background Problem Approach

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

Signifier is a process

CCA D. Pavlovic

Lambek pregroups are Frobenius spiders

 $xx^{\ell} \leftarrow \iota \leftarrow x^{\ell}x , x^{r}x \leftarrow \iota \leftarrow xx^{r}$

D. Pavlovic

Background Problem Approach Method Solution Architecture

CCA

 $(xy \leftarrow uv) \vdash (xy \leftarrow xsv \leftarrow uv) \ , \ (xy \leftarrow uty \leftarrow uv)$

€

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Lambek pregroups are Frobenius spiders

Background Problem Approach Method Solution Architecture

$$xx^{\ell} \leftarrow \iota \leftarrow x^{\ell}x \ , \ x^{r}x \leftarrow \iota \leftarrow xx^{r}$$

$$(xy \leftarrow uv) \vdash (xy \leftarrow xsv \leftarrow uv) \ , \ (xy \leftarrow uty \leftarrow uv)$$

arXiv:2105.03038

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

CCA D. Pavlovic