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Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category
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Background: Mining concepts from data

Formal Concept Analysis

Latent Semantic Analysis

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions
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Concept mining

NPR CNN FOX KHON

Alice ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆

Bob ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

Carol ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Dave ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆

Ed ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

A Recommender System mines concepts from data
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Concept mining is the goal of data analysis

domain J U R Aiu

user preference items users {0, . . . ,5} rating

text analysis documents terms N occurrence

topic search authorities hubs N hyperlinks

measurement instances quantities R outcome

concept analysys objects attributes {0,1} property

elections candidates voters {1, . . . ,n} preference

market producers consumers Z deliveries

digital images positions pixels [0,1] intensity
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Formal Concept Analysis

NPR CNN FOX KHON

Alice ⋆ ⋆ ⋆ ⋆

Bob ⋆ ⋆ ⋆

Carol ⋆ ⋆ ⋆

Dave ⋆ ⋆ ⋆

Ed ⋆ ⋆ ⋆



CCA

D. Pavlovic

Background

FCA

LSA

Problem

Approach

Method

Solution

Architecture

Formal Concept Analysis
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Concepts are complete subgraphs
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Concepts are complete subgraphs
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Concept lattice

a
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Powersets are
⋃

-completions

U

J

{0, 1}U

{0, 1}J

η

η

R
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⋃

- completions Galois connections

U

J

{0, 1}U

{0, 1}J

η

η

R∗

R∗

R

R∗X =
⋂

x∈X

xR where xR={y∈J | xRy }

R∗Y =
⋂

y∈Y

Ry where Ry={x∈U | xRy }
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Fixpoints tight bicompletion concept lattice

U

J

{0, 1}U

{0, 1}J

η

η

R
C

∈

∈

xRy =
∨

c∈C

x ∈ cU ∧ cJ ∋ y
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Latent Semantic Analysis

a b c d e

i 1.25 1.05 1.12 1.57

j .83 1.13 1.02 .35 .18

k 0 .35 .21 -.56 1.02

ℓ -.12 .98
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Latent Semantic Analysis

.35
1.12 1.02

.21

1.57

−.56

.35

a

b

c

d

i

j

k

1.25

1.05

e
ℓ

JU

.18

.98

1.02

−.12 .830

1.13
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Vector spaces are mix-completions

U

J

RU

RJ

η

η

L‡

L‡

L
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Matrices adjoint operators

U

J

RU

RJ

η

η

L‡

L‡

L

L‡ξ =



















n
∑

j=1

Lijξj



















m

i=1

L‡υ =

















m
∑

i=1

υiLij

















n

j=1



CCA

D. Pavlovic

Background

FCA

LSA

Problem

Approach

Method

Solution

Architecture

Eigenspaces tight completion concept space

U

J

RU

RJ

η

η

L
C

P

E

Lij =
∑

γ∈C

λγ · Eiγ · Pγj



CCA

D. Pavlovic

Background

FCA

LSA

Problem

Approach

Method

Solution

Architecture

Spectrum dominant concepts

Concepts are the eigenspaces of L‡L
‡ and L‡L‡, because

γU = L‡γJ ∧ L‡γU = γJ

m

γU = L‡L‡γU ∧ L‡L
‡γJ = γJ
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Singular Value Decomposition (SVD)





















1.25 1.05 1.12 1.57

.83 1.13 1.02 .35

0 .35 .21 −.56
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.83 −.4
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Information flows through concepts

JU C

.5

.3

.5

.5

.83 i

j

k

a

b

c

d −.8

.5

.5 .55

−.4
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.7
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Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions
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FCA: Concepts are the particles of meaning

a

b

c

d

i

j

k

e
ℓ

JU C

aRk = ∃c ∈ C. a ∈ c ∧ c ∋ k
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LSA: Concept associations add up. . .

JU C

.3

i

j

k

a

b

c

d

.5

.55

.6

3

1

λ1

λ2

Lcj = 3(.5 × .55) + (.3 × .6)
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. . . and create waves of meaning

JU C

.3

i

j

k

a

b
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d

.5

.55

.6

3

1

λ1

λ2

Lcj = 3(.5 × .55) + (.3 × .6)
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The meaning of numbers

◮ Lui = how much does the user u use the item i

◮ Puγ = how much of u’s usage is due to the concept γ

◮ Eγi = how much of the utility of i is due to the concept γ
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The meaning of decomposition

If the data are normalized

Lui = Pr(u, i) Eγi = Pr(γ, i) Puγ = Pr(u, γ)

then the decomposition Lui =
∑

γ

(

Puγ × Eγi

)

implies

Pr(u, i) = Pr(u, γ1, i) + Pr(u, γ2, i)

= Pr(u, γ1) × Pr(γ1, i) + Pr(u, γ2) × Pr(γ2, i)
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The meaning of decomposition

If the data are normalized

Lui = Pr(u, i) Eγi = Pr(γ, i) Puγ = Pr(u, γ)

then the decomposition Lui =
∑

γ

(

Puγ × Eγi

)

implies

Pr(u, i) = Pr(u, γ1, i) + Pr(u, γ2, i)

= Pr(u, γ1) × Pr(γ1, i) + Pr(u, γ2) × Pr(γ2, i)

— which means that u and i are independent —
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their own independency assumption.
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Any existing dependencies are amplified.
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Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions
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Concept associations add up

JU C

.3

.5

.55

.6

3

1

λ1

λ2

Lui = λ1Puγ1
Eγ1i + λ2Puγ2

Eγ2i
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. . . to explain the correlation counts

JU

3

L : U ×J −→ R

〈u, i〉 7→ 3
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Idea: Record correlation events

JU

Φ: Uo × J −→ Set

〈u, i〉 7→ {↑, ↑, ↑}
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Decomposition of set-matrices

JU C

Φ(u, i) ←− Υ(u, γ1) ×Ψ(γ1, i) + Υ(u, γ2) ×Ψ(γ2, i)

↑ 7→ 〈↑, ↑〉

↑ 7→ 〈↑, ↑↑↑〉

↑ 7→ 〈↑, ↑↑〉, 〈↑, ↑〉
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Decomposition of categorical matrices

JU C

Known data correlations are captured

in terms of morphisms
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Categorical matrices
(a.k.a. distributors, profunctors, bimodules)

JU Φ

Events can be identified by

identifying the morphism actions
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Categorical matrices
(a.k.a. distributors, profunctors, bimodules)

JU Φ

Data dependencies can be captured

in terms of morphism compositions.
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Categorical matrix

is a matrix of sets acted upon by categories:

U(a, a′) × Φ(a′, k ′) × J(k ′, k)
Φ
−→ Φ(a, k)
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Categorical matrix composition

U(u, u′) ×Υ(u′, γ′) × C(γ′, γ)
Υ
−→ Υ(u, γ)

C(γ, γ′′) ×Ψ(γ′′, i ′′) × J(i ′′, i)
Ψ
−→ Ψ(γ, i)
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Categorical matrix composition

U(u, u′) ×Υ(u′, γ′) × C(γ′, γ)
Υ
−→ Υ(u, γ)

C(γ, γ′′) ×Ψ(γ′′, i ′′) × J(i ′′, i)
Ψ
−→ Ψ(γ, i)

U(u, u′) ×Υ(u′, γ) ×Ψ(γ, i ′) × J(i ′, i)
Υ;Ψ
−→ Υ(u, γ) ×Ψ(γ, i)



CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

Categorical matrix composition

U(u, u′) ×Υ(u′, γ′) × C(γ′, γ)
Υ
−→ Υ(u, γ)

C(γ, γ′′) ×Ψ(γ′′, i ′′) × J(i ′′, i)
Ψ
−→ Ψ(γ, i)

U(u, u′) ×Υ(u′, γ) ×Ψ(γ, i ′) × J(i ′, i)
Υ;Ψ
−→ Υ(u, γ) ×Ψ(γ, i)

U(u, u′) × Φ(u′, i ′) × J(i ′, i)
Φ
−→ Φ(u, i)

where

Φ(u, i) =

∫

γ∈C

Υ(u, γ) × E(γ, i)

=

















∐

γ∈C

Υ(u, γ) × E(γ, i)

















/

∼

for 〈ν, ψ〉 ∼ ∃u∃j . 〈u∗ν, j∗ψ〉
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Categorical matrices adjoint functors

U

J

SetU
o

(

SetJ
)o

Φ∗

Φ∗

Φ

Φ∗X = lim
−−→

ΦuXu

Φ∗Y = lim
←−−

YiΦi
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Task: tight completion concept category

U

J

SetU
o

(

SetJ
)o

Φ
mΦ

Υ

Ψ

Φ(u, i) =

∫

γ∈C
Υ(u, γ) ×Ψ(γ, i)
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Retrace the FCA workflow?
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Posetal matrix

is a lower-closed set R ⊆ U × Jo, i.e.

u
U
≤ u′ ∧ u′Ri ′ ∧ i ′

J

≤ i =⇒ uRi
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Posetal matrix composition

u
U

≤ u′ ∧ u′Pγ′ ∧ γ′
C
≤ γ =⇒ uPγ

γ
C
≤ γ′′ ∧ γ′′Ei ′′ ∧ i ′′

J

≤ i =⇒ γEi

u
U

≤ u′ ∧ u′Pγ ∧ γEi ′ ∧ i ′
J

≤ i =⇒ uPγ ∧ γEi

u
U

≤ u′ ∧ u′Ri ′ ∧ i ′
J

≤ i =⇒ uRi

where

uRi ⇐⇒ ∃γ. uPγ ∧ γEi
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Posetal matrix composition

u
U

≤ u′ ∧ u′ ∈ γ′ ∧ γ′ ⊆ γ =⇒ u ∈ γ

γ ⊆ γ′′ ∧ γ′′ ∋ i ′′ ∧ i ′′
J

≤ i =⇒ γ ∋ i

u
U

≤ u′ ∧ u′ ∈ γ ∧ γ ∋ i ′ ∧ i ′
J

≤ i =⇒ u ∈ γ ∧ γ ∋ i

u
U

≤ u′ ∧ u′Ri ′ ∧ i ′
J

≤ i =⇒ uRi

where

uRi ⇐⇒ ∃γ. u ∈ γ ∧ γ ∋ i
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Tight completion concept lattice

U

J

⇓U

⇑J

R
mR

∈

∈

uRi = ∃γ ∈ C. u ∈ γ⇓ ∧ γ⇑ ∋ i
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Dedekind completion the real continuum

Q

Q

⇓Q

⇑Q

≤
R

∈

∈

q
Q

≤ q′ = ∃r ∈ R. q ∈ r⇓ ∧ r⇑ ∋ q′
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Dedekind completion of a category
(Lambek 1964)

C

C

⇓C

⇑C

Hom

mC
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Dedekind completion of a category doesn’t exist
(Isbell 1972)

C

C

⇓C

⇑C

Hom

mC
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But we use and compute concept categories
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Upshot

◮ Background: Tight poset completions for
∨

!
∧

.

◮ Task: Tight category completions.

◮ Obstacle: No tight category completions for lim
←−−
6! lim
−−→

.

◮ New task: Tight category completions for

tight limits
←−−
lim!

−−→
lim.
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Upshot

◮ Background: Tight poset completions for
∨

!
∧

.

◮ Task: Tight category completions.

◮ Obstacle: No tight category completions for lim
←−−
6! lim
−−→

.

◮ New task: Tight category completions for

tight limits
←−−
lim!

−−→
lim.

◮ What are
←−−
lim!

−−→
lim?
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Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions
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Reminder: Meets and joins

P ⇓P P ⇑P⊥

▽

∨

⊤

△

∧

P(lim
−−→
←−α, y) � ⇓P(←−α,▽y) P(x , lim

←−−

−→
β ) � ⇑P(△x ,

−→
β )
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Reminder: Limits and colimits

C ⇓C C ⇑C⊥

▽

lim
−−→

⊤

△

lim
←−−

C(lim
−−→
←−α, y) � ⇓C(←−α,▽y) C(x , lim

←−−

−→
β ) � ⇑C(△x ,

−→
β )
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Tight limits and colimits

C ⇓C	 C ⇑C	⊥

▽

−−→
lim

⊤

△

←−−
lim

C(
−−→
lim
ϕ

←−α, y) � ⇓C	(ϕ←−α , id▽y ) C(x ,
←−−
lim
ψ

−→
β ) � ⇑C	(id△x , ψ−→β )

where. . .
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Tight limits and colimits

where ⇓C	 is defined

|⇓C	| =
∐

←−α∈⇓C















































△
←−α ▽△

←−α α

△
←−α △

←−α ▽△
←−α

ϕ ϕ ▽ϕ

ϕ















































⇓C	(ϕ←−α , ψ←−β ) =















































f ∈ ⇓C(←−α,
←−
β )

∣

∣

∣

∣

△
←−α △

←−
β

△
←−α △

←−
β

△f

ϕ ψ

△f















































and ⇑C	 is dual.
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(Background proposition)

⇓C	 ≃ ⇑Cj ⇑C	 ≃ ⇓Cl

follows from

Quotients in monadic programming: Projective algebras

are equivalent to coalgebras. LICS 2017 or

https://arxiv.org/abs/1701.07601
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Outline

Background: Mining concepts from data

Problem: From recommenders to echo chambers

Approach: Data dependencies as morphisms

Method: Nuclear adjunctions

Solution: The concept category

Architecture: Channels = adjunctions
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Concept category

|mΦ| =
∐

←−α∈⇓U
←−
Φ

−→α∈⇑J
−→
Φ























←−α Φ♯
−→α

←−

←−
g

∧ Φ♯←−α −→α

−→
g

−→























mΦ(α, β) =
∐

←−
f ∈⇓U

←−
Φ(←−α,

←−
β )

−→
f ∈⇑J

−→
Φ(−→α ,

−→
β )























































←−
x Φ∗

−→
x

←−
x

←−
y Φ∗

−→
y

←−
y

←− α

←−
f

←−
g α

Φ∗
−→
f

←−
f

←− β
←−
g β
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Concept category

|mΦ| =
∐

←−α∈⇓U
←−
Φ

−→α∈⇑J
−→
Φ























←−α Φ♯
−→α

←−

←−
g

∧ Φ♯←−α −→α

−→
g

−→























mΦ(α, β) =
∐

←−
f ∈⇓U

←−
Φ(←−α,

←−
β )

−→
f ∈⇑J

−→
Φ(−→α ,

−→
β )























































−→
x Φ∗

←−
x

−→
x

−→
y Φ∗

←−
y

−→
y

−→
g α

−→ α

−→
f

−→
g β

Φ∗
←−
f

−→
f

−→ β
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Semantics in mathematics = category theory

|= Hom(∆,M)
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Semantics is adjunction

Mnf (M,R∆) � Grp(LM,∆)
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Sign learners

◮ children: competent learning

◮ cryptanalysts: adversarial learning

◮ scientists: approximate learning



CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

Sign is a process



CCA

D. Pavlovic

Background

Problem

Approach

Method

Solution

Architecture

Fast learners

◮ GPT-3, BERT: simulate the sign
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