
Formalizing Physical Security Procedures

Catherine Meadows1 and Dusko Pavlovic2

1 Naval Research Laboratory, Washington, DC, USA
Email: meadows@itd.nrl.navy.mil

2 Royal Holloway, Oxford and Twente
Email: dusko.pavlovic@rhul.ac.uk

Abstract. Although the problems of physical security emerged more
than 10,000 years before the problems of computer security, no formal
methods have been developed for them, and the solutions have been
evolving slowly, mostly through social procedures. But as the traffic on
physical and social networks is now increasingly expedited by comput-
ers, the problems of physical and social security are becoming technical
problems. From various directions, many security researchers and practi-
tioners have come to a realization that the areas such as transportation
security, public and private space protection, or critical infrastructure
defense, are in need of formalized engineering methodologies. Following
this lead, we extended Protocol Derivation Logic (PDL) to Procedure
Derivation Logic (still PDL). In contrast with a protocol, where some
principals send and receive some messages, in a procedure they can also
exchange and move some objects. For simplicity, in the present paper
we actually focus on the security issues arising from traffic of objects,
and leave the data flows, and the phenomena emerging from the interac-
tion of data and objects, for future work. We illustrate our approach by
applying it to a flawed airport security procedure described by Schneier.

Keywords: formal security protocol analysis, physical procedure anal-
ysis, physical security, security policies

1 Introduction

It is well known that the use of security protocols goes well beyond their applica-
tion to communication between electronic devices. Any procedure that gives rules
for interaction between a set of principals in order to provide security against
misbehavior can be considered a security protocol in a broader since, whether
the principals are human beings, computers, hand-held or embedded devices, or
some mixture. Thus Ellison [10] proposed the idea of “ceremonies”, which extend
the notion of computer-to-computer security protocols to the human end users
who interact with them. In [2] Blaze proposes an even further extension of the
notion of security protocols: those that cover scripted interactions in general, for
example, interactions between passengers and authorities in airports, railroad
seat checks, and denial of service in burglar alarms.

Blaze’s example of a flawed airport security procedure gives an idea of the
kind of things that can go wrong. It arose from the fact that passengers arriving in



2 Catherine Meadows and Dusko Pavlovic

the US from overseas must clear their luggage through customs at their first point
of entry, even if they are connecting to another flight within the US. Originally,
passengers were not required to be checked through security again after clearing
customs. They simply re-checked their luggage. This caused a problem when rules
changed shortly after September 11, 2001, after which passengers could no longer
carry knives aboard planes, but were allowed to put them in checked luggage.
Until the rules were modified to require another security check, a passenger could
circumvent the new policy by packing knives in his checked luggage, picking it
up upon arrival in the US, transferring the knives to his person, passing through
customs, dropping off his now knifeless luggage, and catching the next flight.

Another flawed airport security procedure was documented by Bruce Schneier
in [20].Shortly after the “shoe bomber” incident, a new policy went into effect in
many locations requiring shoes to be screened, but many airport security scan-
ners could not screen passengers’ feet. For a short while the following policy was
implemented at Heathrow Terminal 3. A passenger would go through security,
handing his carry-on to be scanned and himself passing through a security scan-
ner, and pick it up upon emerging from the other end. Then he would pass to
another station in which he would hand over his shoes to be scanned. Schneier
points out that that a passenger could easily circumvent this procedure by hiding
contraband items in his shoes, and packing another pair of shoes in his carry-on.
After passing through the body scanner, the passenger could then switch shoes
and proceed to the shoe scanning station, where his now innocent shoes would
be given a clean bill of health.

These procedures, and the class of airport security procedures in general,
belong to a larger class of procedures that govern the motion and location of
principals and objects. Any procedure governing the access to a secure facility
such as an airport or an office building falls into this category. As we see from
the above examples, it is as easy for flaws to creep in as it is for cyber secu-
rity protocols, especially when, as is often the case, new procedures are hastily
implemented in response to a changed security situation.

In this paper we show how the logical framework we developed in [19] can be
extended to reasoning about physical access procedures. This framework, called
the Procedure Derivation Logic (PDL), extends our Protocol Derivation Logic
(also PDL) [13, 3, 16, 1, 14, 18, 17], and the earlier ideas of Protocol Composition
Logic (PCL) [9, 5, 4], to reason about the network interactions where principals
may control complex network configurations, consisting of multiple nodes repre-
senting diverse devices, objects and data, with different channels between them,
providing different security guarantees. Such a network configuration, as a con-
crete realization of the capabilities of a principal, is what we call an actor, with a
respectful nod to Actor Network Theory [12], in an attempt to take into account
some social interactions in security.

In [19] we formalized and analyzed some multi-factor, multi-channel authen-
tication and key agreement procedures, one involving smart cards and card
readers, and the other biometric devices and physical sources of randomness,
together with the humans and the standard internet nodes. Both procedures



Formalizing Physical Security Procedures 3

involved some authentic visual and social channels, together with the standard,
insecure internet links. In the present work, we focus on the procedures where
the humans control hierarchical configurations of physical objects, such as those
that arise when we travel, packing our luggage, tickets and documents to sat-
isfy complex security and safety requirements. Such procedures are effectively
described as interactions between the actors, which include not only the passen-
gers with their luggage, but also the various authorities and service providers,
with their control devices, used for screening and transportation.

There are several important issues that these procedures bring forward. The
first one is the dynamics of actors’ configurations: e.g., during the check-in pro-
cedure, a passenger divests himself of some luggage, which becomes a part of
another configuration; during security check, the passenger passes his carry-on
luggage, and in some case his shoes, under the control of the screeners, who may
or may not return these objects later on in the procedure. The next important
issue is the compositionality of security procedures: e.g., the airport procedures
usually come about as combinations of several simpler procedures, previously
introduced to address different security concerns. A passenger interacts with
various other actors in stages, where he receives his boarding pass at one stage,
checks his luggage at another, then enters the screening area where he hands his
carry-on over to the screener, and passes through a body scanning device with
a certain probability, and so on. The problems with the airport security proce-
dures tend to arise not because their individual components are implemented
incorrectly, but because the properties that they guarantee are not adequate for
the composite contexts into which they are introduced. Thus, the task of pro-
cedure design is often inseparable from the problem of procedure composition.
While the same problem is familiar from protocol design, and the incremental
approach of Protocol Derivation Logic usefully extends to Procedure Derivation
Logic, the reasoning templates developed for security protocols do not suffice
for analyzing the complex interactions of the heterogenous security components
in networks of actors. The question then arises: at what level should we specify
and reason about their compositions?

The answer to this question becomes clearer when we take a closer look at
what airport security procedures and policies are regulating. They are concerned
not only with authenticating a passenger’s identity, and the integrity of his lug-
gage, but also with constraining his movements, depending on the configuration
of the objects and data that he controls. Moreover, the passenger’s interactions
with the airport authorities largely consist of movements: handing over lug-
gage and ID, proceeding from one place to another when indicated. Finally, the
breaches and circumventions of the procedures consist of movements as well, if
a passenger finds a way to bring a weapon or a prohibited object into a secure
area by finding a way to move them from one place to another along an unfore-
seen path. This situation, in which an attacker is deemed capable of performing
any combination of a relatively small number of actions, should be familiar to
those acquainted with the formal protocol analysis literature. It is exactly the
kind of approach taken in the Dolev-Yao model [8, 7] in which the attacker is



4 Catherine Meadows and Dusko Pavlovic

assumed to be able to read, alter, and redirect traffic, as well as perform a small
number of operations such as concatenation, deconcatenation, encryption, and
decryption. This gives a regular structure to the attacker model which makes
security protocols amenable to both logical analysis and model checking.

In this paper we show how we use these insights to develop a logical system
for the analysis of policies on of moves, with an application to airport security
procedures. In Section 2 we extend the notion of a network configuration, that
endowed principals with the structure of actors in [19], into the notion of box
configuration, that describes how some objects contain other objects. This turns
out to be convenient for expressing the basic goals and methods of, e.g., airport
security procedures, since the complex configurations of objects controlled by
the participating actors are usually enclosed into physical box configurations. In
Section 3 we provide an overview of a box configuration logic in which conditions
and consequences of moves can be reasoned about. In Section 4 we apply the
logic to airport security procedures, by specifying two different airport security
procedures in terms of the constraints on passenger movements imposed a a
result of the various subprocedures a passenger must engage in order to pass
into the secured area. We also use the logic to analyze the procedures, and
show how, in the case of the shoe procedure, the attempt that prove that the
security goals are satisfied fails. In Section 5 we discuss related work. In Section
6 we conclude the paper and discuss future directions, in particular our plans
for extending our work to include the analysis of interactions and data flows
between principals.

2 Configurations and box configurations

In this section we introduce the basic notion of configurations and box configu-
rations. A configuration is a recursively defined set of sets. A box configuration
is a recursively defined set of possibly labeled sets. Both configurations and box
configurations may also be thought of as unordered trees.

2.1 Basic definitions

A configuration is a collection of nodes that operate jointly in the execution of
a procedure. A box configuration is a special case of a slightly expanded notion
of the definition of configuration introduced in [19]. There we defined a config-
uration over a set S to be either a subset of S or a set of configurations over
S. For box configurations, we find it convenient to allow sets made up of both
elements of S and configurations. Thus we use the following definition:

Definition 1. A configuration over a set S is either an element of S or a finite
set of configurations over S, i.e. C ::= s |{}| {C0, C1, . . . , Cn}, where s ∈ S and
n ≥ 0. The empty configuration is {} = ∅. The set of S-configurations is C(S).

Configurations are thus the elements of what set theorists would call a cu-
mulative hierarchy of finite sets, generated by a set of atoms S. It is easy to see



Formalizing Physical Security Procedures 5

that each S-configuration corresponds to a unique finite tree where the leaves
may be labelled by the elements of S or the empty label (i.e., the empty set).
The subconfigurations of a configuration are those corresponding to the subtrees
of its tree representation.

Now we introduce the notion of a box configuration:

Definition 2. A box configuration over a set S, or an S-box configuration,
is either an S-configuration, or an S-box configuration in a box b, i.e. F ::=
s |{}| {F0, . . . , Fn} | {F0, . . . , Fn}b where the boxes b are distinguished elements
of S. For simplicity, we assume that all elements of S can be boxes. The set of
S-box configurations is written F(S). The element relation is generated by the
clauses F0, . . . , Fn ∈ {F0, . . . , Fn} and b, F0, . . . , Fn ∈ {F0, . . . , Fn}b. We say
that {F0, . . . , Fn}b is rooted in b. We use the notation Xb to denote an arbitrary
box configuration rooted in b.

Example 1. A box configuration describing a passenger pa with a newspaper np,
a phone ph and sunglasses sg in his pocket, and a suitcase sc containing a knife
kn and an explosive device ex can be written as {np, {ph, sg}, {kn, ex}sc}pa.

Definition 3. We say that a box configuration A is contained in a box config-
uration C, or that A is a part of C’s contents, and write

A ⊑ C ⇐⇒ A = C ∨ ∃B. A ⊑ B ∈ C and A ⊏ C ⇐⇒ A ⊑ C ∧ A 6= C

Example 2. In Example 1 above, both kn ⊏ {np, {ph, sg}, {kn, ex}sc}pa and

{kn, ex}sc ⊏ {np, {ph, sg}, {kn, ex}sc}pa hold.

Configurations and box configurations as trees

Proposition 1. The set C(S) of S-configuration is in bijective correspondence
with the set of finite unordered irredundant trees with whose leaves labelled by
elements of S or the empty label. (A tree is irredundant if no two child trees of
any node are identical (see [15], Sec. 5.2 for a discussion).)The set F(S) of S-
box configurations is in bijective correspondence with the set of finite unordered
irredundant trees whose nodes are labelled by elements of S or the empty label.

For reasons of space the proof is omitted. We note in particular that if A and
B are two box configurations, then A ⊑ B only if the tree associated with A is
a subtree of the tree associated with B.

We will be particularly interested in box configurations whose labels are all
different; i. e. each labelled node corresponds to a unique object.

Definition 4. A box configuration C is normal if no two nodes of the corre-
sponding tree are labelled by the same atom from S.

Example 3. Example 1 can also be depicted as the following labelled tree

pa

pppppp

NNNNNN

np •

qq
qq

qq
q

sc

MMMMMM

ph sq kn ex



6 Catherine Meadows and Dusko Pavlovic

2.2 Types and Constraining Set Membership

We put a typing structure on S, where a type is simply a subset of S. Types
are partially ordered by the subset relation. The typing is also applied to box
configurations of the form Xs; if s ∈ S is of type t, then so is Xs.

One important application of types is in the expression of restrictions on what
can box configurations can be elements of what other box configurations. For
example, we may want to specify that an passenger can be inside an airplane,
but an airplane can’t be inside a passenger. We define a relation ⋉ on box
configuration types, where a⋉ b if and only if box configurations of type a can
be elements of box configurations of type b.

Example 4. Let pa be the type passenger, su be the type suitcase, kn be the
type knife, and let ex be the type explosive. Then su,kn, ex⋉pa and kn, ex⋉su.

We note that, although the ⋉ relation defined in Example 4 is transitive,
this is not always the case. For example, if we have box configurations of the
type principal, room, and building, it may make sense to say that a principal
may be an element of a room, and a room may be an element of a building,
but the principal can’t be an element of a building. That is, a principal can’t be
contained in a building unless he is in a room in the building.

Definition 5. We define the multiplicity of a type t in a box configuration
C, denoted by mult(C, t) as follows: 1) mult(∅, t) = 0, 2) mult(s, t) = 1 if
s ∈ t, else mult(s, t) = 0. 3) mult({F1, . . . Fn}, t) =

∑n

i=0
mult(Fi, t), and 4)

mult(Xs, t) = mult(X, t) +mult(s, t).

We also use mult(b, t) to refer to the multiplicity of t in the box configuration
rooted in b, when we can avoid confusion.

Example 5. Let PA = {{kn1, kn2, ex1}su1, su2}pa where pa ∈ pa, su1, su2 ∈ su,

kn1, kn2 ∈ kn, and ex1 ∈ ex. Then mult(PA,kn) = 2,mult(PA, su) = 2, and
mult(PA, ex) = 1.

The following property of multiplicities, which follows straightforwardly from
the properties of trees, will also be useful to us.

Proposition 2. Let X and Y be box configurations, and let t be a type. Then
if X ⊑ Y , then mult(X, t) ≤ mult(Y, t).

Example 6. Let Xpa be a passenger in the secure area sa of an airport, i. e.
Xpa ⊏ Ysa. Suppose that it is known that the secure area contains no explosives,
that is mult(sa, ex) = 0. Then we can conclude that mult(pa, ex) = 0.

2.3 Displacing Subtrees

A key feature of our logical system is the ability to reason about what occurs
when a box subconfiguration moves from one part of a box configuration to
another. In order to capture what happens in these circumstances, we define the
notion of box subconfiguration displacement. We first introduce some notation.



Formalizing Physical Security Procedures 7

Definition 6. Suppose that X, Y , and Z are box configurations such that X ∈ Y
and X 6∈ Z. We denote Y \ {X} by Y ⊖X and Z ∪{X} by Z ⊕X. If Y, Z ⊑ W ,
we denote the result of replacing Y in W with Y ⊖ X by W [Y ⊖ X ], and the
result of replacing Z in W with Z ⊕X by W [Z ⊕X ].

Definition 7. Suppose that X ∈ Z ⊑ U and Y ⊑ U where U is normal. We
define a displacement of X from under Z to under Y in U , denoted by U [Y ⊖
X,Z ⊕X ], as follows. If Z 6= Y , then replace Z with Z ⊖X and replace Y with
Y ⊕ Z. Else, if Z = Y , then U [Y ⊖X,Z ⊕X ] = U .

Example 7. Suppose that two passengers pa1 and pa2 are in an airport ap.
Suppose that one passenger is carrying a suitcase, in which there is a knife,
and hands the knife to the other passenger. The original box configuration is
U = {{{kn}sc}pa1

, pa2}
ap
. The new one is is {{sc}pa1

, {kn}pa2
}
ap
.

The next proposition follows directly from the properties of normal trees.

Proposition 3. Suppose U is normal, and that X ⊑ U and Y ⊑ U . Then

1. If X ∈ Z ⊑ Q ⊑ U ∧Q∩ Y = ∅ then Q is replaced in U [Y ⊖X,Z ⊕X ] with
Q[Z ⊖X ] and mult(Q[Z ⊖X ],m) = mult(Q,m)−mult(X,m).

2. If Z ⊑ Q ⊑ U ∧X ∩Q = ∅ ∧ Y ⊑ Q then Q is replaced in U [Y ⊖X,Z ⊕X ]
with Q[Y ⊕X ] and mult(Q[Y ⊕X ],m) = mult(Q,m) +mult(X,m)

3. If X ∈ Z ⊑ Q ⊑ U ∧ Y ⊑ Q then Q is replaced in U [Y ⊖ X,Z ⊕X ] with
Q[Y ⊖X,Z ⊕X ] and mult(Q[Y ⊖X,Z ⊕X ],m) = mult(Q,m).

3 A Logic of Moves

In this section we present our logic of moves. In Section 3.1 we give the semantic
underpinnings of the logic, in Section 3.2, a policy language for moves, and in
Section 3.3, a logical system for proving that a policy specified in the policy
language implements a policy defined in terms of state invariants on runs.

3.1 States, Runs, and Processes

We consider a process P made up of nondeterministic concurrent processes P ,
each associated to a unique principal p, that act upon a single state variable
U whose value is a normal box configuration called the universe. When we can
avoid confusion, we will refer to a state by the current value of U. P acts on U

by assigning to it a new version of the universe that has been altered by moving
some box subconfiguration O of the universe to another box subconfiguration Y ,
resulting in a displacement of O to Y . We refer to such actions as move actions.

We make use of the following notation:

Definition 8. A move action of O from under Y to under X executed by prin-
cipal p is a state transition in which the preceding state U satisfies O ∈ Y ⊑ U



8 Catherine Meadows and Dusko Pavlovic

and the succeeding state is U [Y ⊖ X,O ⊕ X ]. It is denoted by p : X
O
−→
∈

Y . A

move action of O from X to Y executed by p is an action p : R
O
−→
∈

Q in which

U satisfies O ∈ R ⊑ X ⊑ U and Q ⊑ Y ⊑ U for some R,Q immediately before

the transition. It is denoted by p : X
O
−→ Y .

We note that p : X
O
−→
∈

Y denotes a unique action, while p : X
O
−→ Y denotes

one of a possible set of actions. We define p : X
O
−→ Y in this way because in

many cases we do not care whether an object is an element of another as long
as it is a box subconfiguration of the other. For example, if A puts a knife into
B’s suitcase, she can be considered as having given it to B.

Move actions are assumed to be atomic, so that a condition that holds when
a move action begins to execute continues to hold until it is finished.

Example 8. The action in Example 7 can be represented as

pa1 : {{{kn}sc}pa1

, pa2}
ap

kn
−−→ pa2

Moves can describe a number of different actions. Let Zp and Wq be box
configurations of type principal, and let X ,Y , O be of some other type. Then,

1. p : X
Zp

−−→ Y describes a principal p moving from X to Y .

2. p : Zp
O
−→ Wq describes one principal p giving O to another, q.

3. p : Wq
O
−→ Zp describes one principal taking O from another.

4. p : Zp
O
−→ Y describes a principal putting O in Y .

5. p : X
O
−→ Zp describes a principal removing O from X .

6. p : X
O
−→ Y describes a principal p moving O from X to Y .

Move polices are conditions on what moves may be taken and under what
conditions. Move polices are defined locally, but the intended consequences are
global, defined in terms of runs, as follows.

Definition 9. A run is an alternating sequence of states and moves

U1, p1 : X1

O1−−→ Y1, U2, . . . , Ui, pi : Xi
Oi−−→ Yi, Ui+1, . . .

A policy R defines a set of legal runs. For example, the legal runs of the
airport policy are those in which, in every state, the multiplicity of knives and
explosives in the secure area is zero.

3.2 Syntax of Move Policies

For practical reasons, one enforces a policy, not by controlling the states, but by
controlling the actions. We make this more precise below.



Formalizing Physical Security Procedures 9

Definition 10. Let P be a policy, and R be the set of runs satisfying that policy,
let a be an action, and let f be a predicate on states. We say that f guards a ,
written as f ⇛ A if, for every run R ∈ R, if S immediately precedes a in R,
then f(S) holds.

Definition 11. A move policy is a set of statements describing under what
conditions an action may take place. The syntax of move policies is given below,
where X is a variable representing a boxconfiguration, and p, t, and n, are each
a variable or constant representing respectively a principal, type, and integer.

C ::= X | b | p | {C} | Cb | C1[C2 ⊖ C3] | C1[C2 ⊕ C3] | {C|R} |

C1[C3 ⊖ C2, C4 ⊕ C2] | {C1, . . . , Ck}

E ::= n | mult(C, t) | mult(b, t) | E1 × E2 | E1 − E2 | E1 + E2

R ::= E1 = E2 | E1 ≤ E2 | E1 < E2 | C1 ⊏ C2 | C1 ⊑ C2 | C1 = C2 |

t1 ⋉ t2 | b ∈ t | R1 ⇒ R2 | not(R) | R1 ∨R2 | R1 ∧R2 | ∃X.R | ⊥ | ⊤

A ::= p : C1

C3−−→ C2 | p : C1

C3−−→
∈

C2

G ::= R ⇛ A

Variables are assumed to be universally quantified unless bound by ∃.

Example 9. Given two locations, the unsecured area ua, and the secure area sa,
such that no object or person containing a knife may enter sa, we write the move

policy as mult(Z,kn) = 0 ⇛ p : Oua
O
−→ Ysa.

3.3 Move Logic

In this section we give the logic of moves that will be used to show that a move
policy enforces a policy on runs that is described in terms of state invariants.

Statements in the move logic are of two forms. They can be Hoare triples,
which say that if a state satisfies predicate f1 before an action, then it satisfies
predicate f2 after that action:

{f1}p : X
O
−→
∈

Y {f2} or {f1}p : X
O
−→ Y {f2}

Statements can also be expressed in terms of move policy statements as defined
in Section 11. If no policy statement exists for an action a, then ⊥ ⇛ a holds.

The idea is to specify a safety policy in terms of invariants on states that are
preserved in all possible runs. A move policy is then specified as in Definition
11. One then uses the Hoare logic to determine the result of enforcing the policy.
This is done by finding, for each move action a, and each invariant g specified
by the policy, a guard f such that {f ∧ g}a{g} holds.

We use the standard inference rules in Hoare logic (e.g. as presented in [11]),
with the exception of the while rules and the rule for composition, which are not



10 Catherine Meadows and Dusko Pavlovic

sound with respect to our concurrent semantics. We also use the inference rules
for first-order logic and the following rule governing guards:

f1 ⇛ a f2 ⇛ a

f1 ∧ f2 ⇛ a

We also give the following axioms describing results of moves, which follow
directly from the definitions given in Section 3.1.

{U = U}p : X
O
−→
∈

Y {U := U [X ⊖O, Y ⊕O]} (1)

O ∈ X ⊑ U ⇛ p : X
O
−→
∈

Y (2)

{U = U}p : X
O
−→ Y {∃Q,R.Q ⊑ X ∧R ⊑ Y ∧U := U [Q⊖O,R ⊕O]} (3)

O ⊑ X ⊑ U ⇛ p : X
O
−→ Y (4)

4 Airport Security Procedure

We develop the airport security procedure in an incremental fashion. We begin
with the simplest case, with only spatial constraints on passenger movements.
We then add a step in which passengers are checked for forbidden items. We next
add the step in which passenger carry-ons are checked separately. We finish with
an insecure procedure in which the passenger’s shoes are checked separately.

4.1 Locations, Passengers and the Items Passengers May Carry

In this section we specify the various types used in the procedure, and the
subtype relation between them. First is the passenger type pa: a subtype of
principal. Next is the type su for suitcase. The type su has three subtypes, large
suitcase ls, small suitcase ss, and personal item pi. We also have type disallowed,
or da, with subtypes knives kn and explosives ex. We also have the types ft for
foot and sh for shoes. Finally, we have the type location lo and the universe u.

We give the relation ⋉ defining what box configurations may contain others:

lo⋉ u ls⋉ t.t ∈ {pa, lo} pi⋉ t.t ∈ {ss, ls,pa, lo} pa⋉ lo

sh⋉ ft ss⋉ t.t ∈ {ls,pa, lo} da⋉ t.t ∈ {sh,pi, ss, ls,pa, lo}

Our goal is to prove that all actions maintain the invariant mult(sa,da) = 0.

4.2 Procedure With Spatial Constraints Only

We begin with just three locations: outside the airport, or os, the unsecured area
inside the airport, or ua, and the secure area inside the airport, or sa.



Formalizing Physical Security Procedures 11

At this point, the security controls are minimal. We do make a few restrictions
however: the only thing a passenger can move from one location to another is
himself, and there are restrictions on the areas he can move between. This can be
expressed in the move logic syntax as the disjunction of atomic conditions, but
for the sake of conciseness and readability we express it using a relation R1 =
{(os, ua), (ua, os), (ua, sa)(sa, ua)}. We specify the permitted move actions:

(ℓ1, ℓ2) ∈ R1 ⇛ pa : Xℓ1

Zpa

−−→ Yℓ2 (5)

lo ∈ lo ∧ Z ⊏ X ∧ Upa ⊏ Vlo ∧X ⊏ Vlo ∧ Y ⊏ Vlo ⇛ pa : X
Z
−→ Y (6)

Axiom 5 tells us that a passenger can move from one location ℓ1 to another
location ℓ2 only if (ℓ1, ℓ2) ∈ R1. Axiom 6 tells us that a passenger can move
a box configuration (other than himself) from X to Y only if X , Y , and the
passenger are in the same location.

By applying Proposition 3, we see that the only way a disallowed item can
pass into the secured area sa is by a passenger carrying it passing from the un-
secured area ua into sa. Thus one way to prevent disallowed items from entering
sa is to prevent passengers carrying them from moving from ua to sa.

4.3 Adding Passenger Screening

In order to add passenger screening, we add the location it will take place in:
the passenger screening area, psa. We replace the passage between ua and sa in
R1 with passages between ua and psa and between psa and sa:

R2 = (R1/{(ua, sa)}) ∪ {(ua, psa), (psa, ua), (psa, sa)}

We now replace Axiom 5 with

(lo1, lo2) ∈ R2 ⇛ pa : Xlo1

Zpa

−−→ Ylo2 (7)

We next need to include a condition saying that the passenger can be carrying
no large suitcases, and only one small suitcase and one personal item. However,
we note that it is not enough to count multiplicities in the passenger, since a
passenger can carry more than one personal item as long as all but one are in the
small suitcase. That is, the multiplicity of personal items in the box configuration
formed by deleting the small suitcase box configuration (if one exists) from the
passenger box configuration should be no more than one. We write this as follows.

Zpa ⊏ Xsl ∧mult(Zpa, ls) = 0 ∧mult(Zpa, ss) ≤ 1∧

∧mult(Zpa,pi)−mult({Wss|Wss ⊏ Zpa},pi) ≤ 1 ⇛ pa : Xsl

Zpa

−−→ Ypsa (8)

Axiom 6 remains the same.



12 Catherine Meadows and Dusko Pavlovic

We now add an axiom saying that the passenger can move from the passenger
screening area to the secure area only if he is carrying no disallowed items.

Zpa ⊏ Xpsa ∧mult(pa,da) = 0 ⇛ pa : Xpsa

Zpa

−−→ Ysa (9)

Proposition 4. Suppose that Axioms 6 7, and 9 hold. Then permitted action a
preserves the invariant.

Proof. (Sketch) By Proposition 3 the only actions permitted by the policy that

we need to consider are those of the form a = pa : Xpsa

Zpa

−−→ Ysa, guarded by
mult(pa,da) = 0. Since, according to Axiom 9, a is guarded bymult(pa,da) = 0,
it remains to prove that {mult(pa,da) = 0∧mult(sa,da) = 0}a{mult(sa,da) =
0}. But this again follows directly from Proposition 3.

4.4 Removing Carry-on

In the above procedure, we specified a single screening step. But the passenger
screener actually consists of two screeners, one for the passenger, and one for
the carry-on. We refine the screening step by introducing two new locations: the
carry-on screener ca, and the passenger screener ps. The passenger now goes
from pa to ps to sa, and before he goes through ps, he is expected to deposit
any carry-on in ca. Thus we begin by defining a new relation R4 on locations.

R3 = (R2/{(psa, sa)}) ∪ {(psa, ps), (ps, psa), (ps, sa)}

Axiom 7 is replaced with:

(lo1, lo2) ∈ R3 ⇛ Zpa : Xlo1

Zpa

−−→ Ylo2 (10)

We also introduce an exception to the rule not allowing passengers to move
items from one location to another by allowing passengers in the passenger
screening area to place any item they are is carrying in the carry-on screener.
Thus Axiom 6 is replaced by the following:

(Zpa ⊏ Wlo ∧X ⊏ Wlo ∧ Y ⊏ Wlo) ∨ (Zpa ⊏ Upsa ∧ T ⊏ Zpa ∧ Y ⊏ Vca)

⇛ Zpa : X
T
−→ Y (11)

Furthermore, a passenger moving from the passenger screening area to the
passenger screener must not be carrying any small suitcases or personal items:

mult(pa, ss) = mult(pa,pi) = 0 ⇛ pa : Xpsa

Zpa

−−→ Ypsa (12)

Axiom 9 is replaced by the following, which applies the same conditions to
the passenger’s movement from the passenger screener to the secure area.



Formalizing Physical Security Procedures 13

Zpa ⊏ Xps ∧mult(Zpa,da) = 0 ⇛ pa : Xps

Zpa

−−→ Ysa (13)

To get the carry-on into the secure area, we introduce another type of prin-
cipal: the airport authority aa, and a subtype of this principal, the carry-on
screening authority csaa. The responsibility of csaa is to remove carry-ons from
the carry-on screener to the secure area if they are free of disallowed items. Thus:

Zca ⊏ Xcs ∧mult(ca,da) = 0 ⇛ csaa : Xcs
Zca−−→ Ysa (14)

Proposition 5. Let SA denote the secure area. Suppose that Axioms 11, 13,
10, 8, ,12 and 14 hold. Then any permitted action a preserves the invariant.

Proof. The proof is similar to that of Proposition 4 and we omit it.

4.5 Screening Shoes

To reproduce the Heathrow solution, we introduce two new locations : the post-
passenger screening area ppsa, and the shoe screener shs. The passenger now
goes from psa to ppsa to the shs, and finally to the secure area sa. Likewise,
the carry-on screener authority puts cleared carry-on in ppsa, not in the sa. The
check done in psa is on all of the passenger except his feet:

R4 = (R3/{(ps, sa)})∪{(ps, ppsa), (ppsa, ps), (ppsa, shs), (shs, ppsa), (shs, sa)}

(lo1, lo2) ∈ R4 ⇛ ps : Xlo1

Zpa

−−→ Ylo2 (15)

mult(Zpa,da)−mult({Wft|Wft ⊏ Zpa},da) = 0 ⇛ pa : Xps

Zpa

−−→ Ysa (16)

Zca ⊏ Xcs ∧mult(Zca,da) = 0 ⇛ csaa : Xcs
contZca
−−−−−→ Yppsa (17)

We also include an axiom describing conditions in which the passenger passes
from the shoe screener to the secure area. If the passenger has one or more feet
then each foot must have a shoe, a shoe that is free of disallowed items:3

(Wft ⊏ Zpa ⇒ Vsh ⊏ Wft) ∧mult(sh,da) = 0) ⇛ pa : Xssh

Zpa

−−→ Ysa (18)

The relevant axioms are now Axioms 8, 12 , 14, 15, 16, 18 and 17.

3 We note that the policy does not take into account the existence of socks, and the
fact that a passenger, could, e.g., hide a knife in his socks. This reflects the Heathrow
policy, which in our experience did not require passengers to remove their socks.



14 Catherine Meadows and Dusko Pavlovic

We now try to prove that the procedure still satisfies the security policy.
There is no longer a guard requiring passengers moving to sa to be free of
disallowed items, so we cannot apply Proposition 3 directly as before. However,
all box configurations entering sa do so through the shoe screener. Thus, if
we can show that for any action a, {mult(ssh,da) = 0}a{mult(ssh,da) =
0}, we can use Proposition 2 to obtain that any box configuration within ssh
contains no disallowed items, and thus use Proposition 3(1) to prove that for
any action a moving a box configuration from ssh to sa, {mult(SA,da) =
0}a{mult(SA,da) = 0}.

But this is not the case, because shoes are not checked before being moved
from ppsa to ssh. Moreover, passengers and shoes are together in the ppsa, and,
according to Axiom 6, passengers can move disallowed objects from their shoes
to their persons when both passengers and shoes are both in the same location.
Thus, we can show that the procedure does not satisfy the security property by
constructing a scenario in which a passenger moves a disallowed item from his
shoes to his person (or, to give Schneier’s example, to his carry-on).

5 Related Work

There has been a substantial amount of work on the logical modeling of location
and movement. Much of it is motivated by the desire to give as accurate picture
of the relevant details of the world as possible (e.g. for modeling transmission in
wireless networks), and is thus beyond the scope of what we are attempting to
achieve. Another area that has been extensively studied is the security of mobile
processes, in which, although location is relevant and included in the model, is
still focused on cyber networks, not human or mixed cyber and human security
procedures. However, as we have noted, there has been increasing awareness of
the need to extend the concept of network security, and with it its formal analysis
beyond cyberspace. We discuss some closely related work below.

Portunes [6] models the physical, social, and digital interactions that take
place in order to defend against or execute a cyber attack. Portunes covers
a wide range of attacks, including social engineering; however the writer of a
Portunes specification needs to specify the individual steps (although not the
attack sequence) taken by the intruder. Thus, if an attacker needs to attach a
dongle to a computer to load a rootkit, one can write that the attacker can offer
a dongle to an employee. In our approach, one would write an axiom governing
the deposition of items in the computer box configuration. The application of our
logic would uncover what the permissible flows are (that is, whether objects not
supplied by the company can be deposited on a computer in a secure room), but
not the specific attack. This difference arises from the somewhat different goals
of Portunes, which is designed to generate attack scenarios for further analysis,
and ours, which is designed for proving (or disproving) security properties.

In [22] Srivatanakul applies different techniques developed for assessing sys-
tem safety to the analysis of security policies involving authorization and con-
tainment, including that used by the Bangkok International Airport’s baggage



Formalizing Physical Security Procedures 15

handling system. The techniques used included methods such as hazard analysis,
fault tree analysis, and mutation testing of formal specifications. In the case of
the baggage handling study, they were particularly useful in identifying poten-
tial consequences of the security assumptions not being satisfied. These results
are complementary to ours, and we can see Srivatanakul’s and our techniques
being applied iteratively in tandem, with the safety analysis techniques used to
identify risks, and ours used to evaluate mitigations.

In [21] Scott presents a language for specifying concerning location and move-
ment. His model and ours have some features in common, as they both involve
nested box configurations and conditions on moves, but it provides only a method
for specifying policies, not reasoning about them. However, he discusses the pos-
sibility of analysis as well as specification, and it possible that an approach such
as ours to reasoning about moves might be realizable within his framework.

6 Conclusion

We have given a logical framework for reasoning about permitted and required
movements, and have shown how it can be applied for reasoning about the secu-
rity of procedures that govern the movement of human beings, such as airport
security procedures. It should be clear though that there is still much relevant
material that is left out. This is everything covering the passenger’s interactions
with the airport authorities. It is not enough, for example, that a passenger’s
carry-on must not contain disallowed items. Instead an airport security agent,
or rather, a configuration consisting of the agent and the screening device, must
observe that the bag is free of disallowed items, and that the passenger has
appropriate authorization and documents.

We have avoided these issues in this paper in order to have as clean a model
as possible of the properties that need to be checked for, as opposed to the
process of checking. But in [19] we developed a framework for reasoning about
interactions between configurations across channels that is intended to capture
just those types of procedures, and the framework set forth in this paper is
designed to be complementary to it. In future work we plan to combine these
two approaches to obtain a comprehensive methodology for reasoning about
procedures that govern movement.

We also see this work as having potential for application in many other
areas. There has been a substantial interest in security policies and procedures
involving location, including location-based access control, secure verification of
location, and location privacy. However, movement is usually only considered as a
means of hiding or tracking location. We believe that the including policies about
movement and logical methods for reasoning about it, can lead, for example, to
richer and more meaningful location-based access control policies. For example,
a passenger in a secure area could be granted certain privileges because he or she
has been verified to be free of knives and explosives. A method of reasoning about
the procedure by which that conclusion was reached would help in ascertaining
the safety of such a policy.



16 Catherine Meadows and Dusko Pavlovic

References

1. M. Anlauff, D. Pavlovic, R. Waldinger, and S. Westfold. Proving authentication
properties in the Protocol Derivation Assistant. In Proc. FCS-ARSPA 2006. ACM,
2006.

2. M. Blaze. Toward a broader view of security protocols. In Security Protocols Work-

shop, LNCS vol. 3957, pp. 106–120. Springer, 2004.
3. I. Cervesato, C. Meadows, and D. Pavlovic. An encapsulated authentication logic

for reasoning about key distribution protocols. In Proc. CSFW 2005, IEEE, 2005.
4. A. Datta, A. Derek, J. Mitchell, and A. Roy. Protocol composition logic (PCL).

Electron. Notes Theor. Comput. Sci., 172:311–358, 2007.
5. A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system and compo-

sitional logic for security protocols. J. of Comp. Security, 13:423–482, 2005.
6. T. Dimkov, W. Pieters, and P. H. Hartel. Portunes: Representing attack scenarios

spanning through the physical, digital and social domain. In ARSPA-WITS, LNCS
vol. 6186, pp. 112–129. Springer, 2010.

7. D. Dolev, S. Even, and R. M. Karp. On the security of ping-pong protocols. Infor-
mation and Control, 55(1-3):57–68, 1982.

8. D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Trans-

actions on Information Theory, 29(2):198–207, 1983.
9. N. Durgin, J. Mitchell, and D. Pavlovic. A compositional logic for proving security

properties of protocols. J. of Comp. Security, 11(4):677–721, 2004.
10. C. Ellison. Ceremony design and analysis. Cryptology ePrint Archive, Report

2007/399, October 2007.
11. D. Gries. The Science of Programming. Springer, 1981.
12. B. Latour. Reassembling the Social: An Introduction to Actor-Network Theory.

Oxford University Press, 2005.
13. C. Meadows and D. Pavlovic. Deriving, attacking and defending the GDOI proto-

col. In Proc. ESORICS 2004, LNCS vol. 3193, pp. 53–72. Springer Verlag, 2004.
14. C. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and P. Syverson. Dis-

tance bounding protocols: authentication logic analysis and collusion attacks. In
R. Poovendran, C. Wang, and S. Roy, editors, Secure Localization and Time Syn-

chronization in Wireless Ad Hoc and Sensor Networks. Springer Verlag, 2006.
15. D. Pavlovic. Categorical logic of concurrency and interaction I. synchronous pro-

cesses. In Theory and Formal Methods of Computing 94, pp. 105–141. World Scien-
tific, 1995.

16. D. Pavlovic and C. Meadows. Deriving secrecy properties in key establishment
protocols. In Proc. ESORICS 2006, LNCS vol. 4189, 2006.

17. D. Pavlovic and C. Meadows. Bayesian authentication: Quantifying security of the
Hancke-Kuhn protocol. E. Notes in Theor. Comp. Sci., 265:97 – 122, 2010.

18. D. Pavlovic and C. Meadows. Deriving ephemeral authentication using channel
axioms. In Proc. Cambridge Workshop on Security Protocols 2009. Springer Verlag.
to appear.

19. D. Pavlovic and C. Meadows. Actor-network procedures - (extended abstract). In
ICDCIT, LNCS vol. 7154, pp. 7–26. Springer, 2012.

20. B. Schneier. Defeating the shoe scanning machine at Heathrow Airport. Schneier
on Security, December 14 2007.

21. D. J. Scott. Abstracting application-level security policy for ubiquitous computing.
PhD thesis, University of Cambridge, 2004. UCAM-CL-TR-613 ISSN 1476-2986.

22. T. Srivatanakul. Security Analysis with Deviational Techniques. PhD thesis, Uni-
versity of York, 2005. YCST-2005-12.


