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Security policy alignment: A formal approach

Wolter Pieters, Trajce Dimkov and Dusko Pavlovic

Abstract—Security policy alignment concerns the matching of
security policies specified at different levels in socio-technical
systems, and delegated to different agents, technical as well
as human. For example, the policy that sales data should not
leave an organisation is refined into policies on door locks,
firewalls and employee behaviour, and this refinement should be
correct with respect to the original policy. Although alignment of
security policies in socio-technical systems has been discussed in
literature, especially in relation to business goals, there has been
no formal treatment of this topic so far in terms of consistency
and completeness of policies. Where formal approaches are used
in policy alignment, these are applied to well-defined technical
access control scenarios instead. We therefore aim at formalising
security policy alignment for complex socio-technical systems in
this paper, and our formalisation is based on predicates over
sequences of actions. We discuss how this formalisation provides
the foundations for existing and future methods for finding
security weaknesses induced by misalignment of policies in socio-
technical systems.

Index Terms—Attack trees, security logics, security policies,
security policy alignment, security policy refinement, socio-
technical systems, system models.

I. INTRODUCTION

Complexity in socio-technical systems is increasing. Sys-
tems composed of information, physical properties and hu-
man behaviour have always been sophisticated, but recent
developments make a real difference. Outsourcing and service
composition cause dissolution of boundaries between organi-
sations. The proliferation of mobile devices causes dissolution
of boundaries between the private and the public sphere,
between work and home. Convergence of access control
mechanisms, as well convergence of bio-, nano- and info-
technologies cause dissolution of boundaries between different
technologies. These trends lead to an explosion of the number
of possible interactions.

When considering the security of information in such socio-
technical systems, developments like working from home,
bring-your-own-device and cloud computing lead to increas-
ingly complicated information security problems. One has
to deal with propagation of access rights in complex attack
scenarios: attackers may exploit vulnerabilities at different
levels, and attacks may include physical access and social
engineering. This is already the case even in relatively simple
scenarios. For example, in the road apple attack, an attacker
will leave infected dongles around the organisation’s premises.
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When an employee picks up a dongle and plugs it into a
company computer, malware will send out all the information
it can find. The possibilities for such multi-step attacks in
increasingly complex systems come with the important ques-
tions how to manage information security policies in complex
situations, and how to check whether the security policies in
place are adequate.

The question of adequacy of security policies (i.e. whether
existing policies provide sufficient protection against the tar-
geted threats) can be addressed from the perspective of se-
curity policy alignment. Security policies may be stated at
different levels of abstraction, where higher-level policies are
refined into lower-level policies. For example, the policy that
sales data should not leave the organisation is refined into
policies on door locks, firewalls and employee behaviour. In
security policy alignment, security policies are tested against
each other, and against business goals, in order to determine
whether they match the associated constraints. Informal ap-
proaches to assess security policy alignment already exist
(e.g. [11, [2], [3], [4]). However, like in many other socio-
technical aspects of information security, a formalisation of
the concepts is lacking. On the other hand, where formal
approaches are used, these are often limited to fairly simple
logical access control problems [5], [6], [7], [8]. In these
frameworks, permission is discussed in terms of single actions,
but not sequences of actions. This reduces the value of the
notion of policy alignment in inspiring formal analysis of
information security in complex systems, where multi-step
attack scenarios are typical. Also, the relation between policy
alignment, security logics, and model checking approaches
remains unclear.

Solhaug and Stglen [9] do discuss policies in terms of
sequences of actions. Their framework allows refinement of
both systems and policies, based on UML specifications.
However, they do not explicitly address security, and therefore
do not support essential concepts in this field. In particular, we
need notions of completeness of policies, and attacks in case
of incompleteness, and the notion of policies on system states
rather than traces.

To resolve this situation, and make the connection between
the different approaches explicit and precise, we provide a
formalisation of security policy alignment in arbitrary types
of (socio-technical) systems, by providing mathematical def-
initions of the central concepts, as well as the relations
between those. This can be seen as an effort complementary
to the formalisation of attack trees by Mauw and Oostdijk
[10] and attack-defense trees by Kordy, Mauw, Radomirovié
and Schweitzer [11]. Whereas attack trees represent possible
undesirable behaviours, they do not contain an explicit notion
of policy or permitted behaviour. This extension of our formal
understanding is necessary to reason about the matching be-



tween different policies in a system, and the relation between
policy mismatches and attack scenarios.

Our approach focuses on the expression of security poli-
cies at different levels of abstraction, specifying whether
behaviours are permitted or forbidden, and the consistency
and completeness of such policies with respect to policies
at other levels. We define policies on traces (sequences of
actions) rather than individual actions, such that both high-
level policies (“‘Sales data should not leave the organisation™)
and low-level policies (“This door can only be opened with a
specific key”) can be expressed in the same framework. We
make a distinction between local and global constraints on
traces (see section IV). Traces are generated from a system
model, which we leave implicit until section VI. Existing
socio-technical system models can be plugged in for this
purpose [12], [13], [14].

We make no distinction between descriptive and normative
policies (e.g. “The door can only be opened with the key”
versus “It should only be allowed to open the door with the
key”), as this is only a matter of abstraction: what is normative
on a high level is implemented by descriptive policies at a
lower level, and when these lower level policies are further
refined, they become normative in turn. This allows us to
express policies in a relatively simple framework. Similarly,
security mechanisms are seen as low-level security policies,
and, indeed, such low-level policies can enforce multiple high-
level policies, and there may be several possible low-level
policies that enforce the same high-level policy [15].

Although the main aim of this paper is theoretical, in the
sense that we provide formal foundations for policy alignment,
it has substantial practical implications in terms of connecting
existing methods for security analysis, as well as in providing
opportunities for future applied research in this area.

In section II, we introduce the concepts involved in security
policy alignment, as well as a running example. In section III
we provide the basic formal definitions, including consistency
of policies, completeness and soundness of policies, plus their
relations. In section IV, we distinguish between different types
of policies, which has practical consequences for methods of
analysis. Model checking consistency and completeness is dis-
cussed in section V, with procedures to generate attacks from
mismatches between global policies and local ones highlighted
in section VI. In section VII, we discuss possible applications
of the framework, followed by related work (section VIII) and
concluding remarks (section IX).

II. SECURITY POLICY ALIGNMENT

Organisations protect sensitive information by means of
describing and implementing security policies. Policies can be
defined at different levels of abstraction. High-level policies
describe the assets of the organisation, as well as desirable
and undesirable states of such assets (e.g. in the hands of
competitors). Human Resources (HR), Physical Security and
IT departments refine these policies into implementable, low-
level policies [16], which are enforced via physical and digital
security mechanisms and training of the employees. These
policies describe the desired behaviour of the employees
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(social domain), the physical security of the premises where
the employees work (physical domain) and the IT security of
the stored and processed information (digital domain) [17],
such that together these refinements realise the high-level
policies.

During the refinement and enforcement of the policies
mistakes may occur. These mistakes could be exploited by
both external parties as well as insiders [18] to achieve a
malicious goal. Therefore, the management needs assurance
that both refinement and enforcement are done correctly. This
assurance is achieved in two steps: auditing and penetration
testing. During the auditing process, auditors assess whether
the security policies produced by the departments are correct
with respect to the policies defined by the management. After
the policies from the departments have been audited, penetra-
tion testers test the security mechanisms correctly enforce the
policies from the departments.

The current work focuses on the auditing of security policies
by comparing formalised security policies in socio-technical
systems (e.g. organisations) and systematically checking the
refinement of high-level into low-level policies. We use the
informal description of policy alignment as presented by
Abrams, Olson and Bailey [19], [20] as a basis. The definitions
in this section provide informal intuitions for the reader’s
convenience; formal definitions will be provided in the next
section.

Definition 1. Security policy alignment is the process of
adjusting to each other different security policies for a system.

When considering a single level of abstraction, consistency
of the policies for a system is the most important concern in
policy alignment. When considering multiple levels, we speak
of policy refinement.

Definition 2. Security policy refinement is the process of
defining policies with a greater level of detail to support a
given general security policy.

This definition does not say anything about whether the
refinement is correct; requirements for correctness will be
discussed and formalised in the following.

The refinement step should be repeated for each level of
abstraction, starting from the policies defined on the highest
level of abstraction, toward policies to a lower level of
abstraction [19]. In refinement, completeness of lower-level
policies with respect to the original policy is an important con-
cern. Moreover, lower-level policies should again be mutually
consistent. To simplify the presentation, we use just two levels
of abstraction for the policies, which we call high-level and
low-level policies. High-level policies are focused on security
goals with respect to the assets of the organisation (“Sales
data should not leave the organisation”), and low-level policies
constrain individual actions of actors (“This door can only be
opened with a specific key”).

We do not focus on the problem of translating policies
from natural language into formal languages. The examples are
intuitive enough for explanation purposes, and the translation
of policies from natural to formal languages is a research topic
by itself [21]. An example of the interpretation problems that
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can occur is provided in [4, ch. 5]. To what extent such a
process can be automated remains to be seen. In the framework
presented in this paper, most policies are relatively simple
access relations (should not have access to..., will grant access
to...), and therefore we believe the translation problems are
manageable.

Policies are specified in terms of permitted or forbidden be-
haviours. A behaviour is a sequence of actions, where an action
is a discrete event that cannot be broken up further. Policies
divide the space of possible behaviours into behaviours that are
permitted, behaviours that are forbidden and behaviours that
are neither forbidden nor permitted. For high-level policies,
the set of behaviours may not even be specified yet, as high-
level policies are often stated in terms of all behaviours
that have an undesirable outcome. For example, a high-level
policy may state that all behaviours leading to the sales data
ending up outside the organisation are forbidden, without
specifying what exactly these behaviours are. Depending on
the refinement of the system into components [22], [23], it
will then become possible to tell which behaviours actually
lead to the undesirable outcome.

When a system is specified in more detail, either by
designing the system or by empirically investigating it, the
policies will also re-appear at lower levels. Such low-level
policies are policies that are delegated to system components,
such as doors, firewalls, and humans. Rather than specifying
what is permitted or forbidden depending on the outcomes
of a behaviour, low-level policies typically permit or forbid
actions based on the executing agent, the location, and/or
the credentials. Also, low-level policies are typically more
exhaustive, in the sense that more behaviours will be explicitly
forbidden or permitted than in the high-level policies. In this
way, the number of behaviours with unspecified permission
will be reduced. When low-level policies are specified in terms
of individual actions rather than complete behaviours, they still
apply to behaviours as well: a behaviour is allowed by the low-
level policies if all the actions it consists of are allowed by the
low-level policies, and a behaviour is forbidden by the low-
level policies if at least one of its actions is forbidden by the
low-level policies.

In this paper, we assume actions to be atomic events on a
single level of abstraction. Although actions can be specified
at different levels when discussing system refinement, for
security policy alignment we are interested in the refinement of
the policies, not the actions. This refinement occurs primarily
in terms of different levels of policies, namely policies that
refer to the actions themselves, and policies that refer to
the outcome of actions. In this context, stating that a certain
behaviour or outcome is not permitted is equivalent to stating
that the corresponding sequences of actions are not permitted,
on the chosen level of abstraction. The translation of actions
into a single level of abstraction will not be discussed further
here.

As an example of policy alignment, suppose an organisation
has a high-level policy that enforces a behaviour: Aggregate
sales data should be given to all shareholders. With the
introduction of a policy that forbids a behaviour: Sales data
should not leave the financial department the set of high-level

policies is not consistent anymore. There is a conflict between
the two policies, because the second policy forbids the sales
data leaving the financial department, while the first policy
requires some of the sales data to leave the organisation. This
is an example of misalignment by inconsistency.

A high-level policy might also be refined into overly permis-
sive or overly restrictive low-level policies, which introduces
an opportunity for an adversary to violate the high-level policy
by means of an attack. We consider attacks as sequences of
actions that conform to a refined set of policies, while violating
the corresponding higher-level policy.

Example 1. As a running example, we consider a variant of
the road apple attack [24]. This attack consists of the following
sequence of actions:

1) Attacker prepares dongles with malware and company

logo;

2) Attacker places dongles in publicly accessible location

(say canteen);

3) Employee takes one dongle and plugs it into computer;

4) Autorun installs rootkit on computer;

5) Rootkit acquires sales data;

6) Rootkit encrypts sales data;

7) Rootkit sends encrypted sales data out (firewall permits

encrypted egress traffic);

8) Attacker receives encrypted sales data.

A high-level policy of the organisation states that sales data
should not leave the organisation. If all of the above actions
are possible, they constitute a violation of the high-level policy.
In this example, overly permissive low-level policies such as
allowing employees to bring storage devices to work and
allowing dongles to be plugged in the computer allow the
violation of the high-level policy. There is thus a misalignment
of policies by incompleteness.

This general overview provides the most important intu-
itions for our approach to policy alignment. We will define
the associated notions of action, behaviour, and policy more
precisely in the following.

III. FORMAL DEFINITIONS

In order to formalise policy alignment, we consider the con-
cepts of action, behaviour, and policy. We then define policies
as first-order logic theories with permission predicates over
behaviours. We will define alignment in terms of consistency
and completeness of policies. Our notation is similar to the
one in [25].

Consider a set of abstract atomic actions £ (for events).
We will call sequences of actions behaviours, with e denoting
the empty behaviour.! The set of all possible behaviours is
denoted 7 = £ (for traces). For a behaviour T € T, we use
the predicate P(7') to indicate that T is permitted.

Definition 3. A policy is a theory © in first-order logic, with
behaviours T € T being the terms and P(_) a distinguished
prefix-closed predicate over behaviours.

! Although [10] use multisets of actions, we consider order important here,
which will become clear when discussing the notion of local policies. We may
wish to generalise sequences to partially ordered multisets in future work [26].
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A visualisation of prefix-closedness of the permission predicate. If a

Fig. 1.
policy would forbid Action2 in the context of a preceding Actionl, it would
effectively forbid all behaviours with prefix (Actionl,Action2). However,
Action2 might be permitted when, say, Action5 would precede it instead.

a

Possible behaviours

Policy 1
PERMITTED

olicy 2
FORBIDDEN

Fig. 2. A Venn diagram of a mutually inconsistent pair of policies. The
behaviours covered by both policies are the ones that are both permitted and
forbidden.

The formula P(T) means that behaviour 7' is permitted
or possible; =P (T) means that a behaviour T' is forbidden
or impossible. If neither P(T") nor —P(T) can be derived
from a policy, then the permissibility of 7" is undecided. For
example, the policy {—P(Actionl, Action2)} would forbid
all behaviours beginning with Actionl followed by Action2.
More complex formulae and sentences can be built using
standard first-order logic constructs. A policy is a theory and
thus consists of a set of sentences.

With prefix-closed, we mean that for every behaviour 7" and
action e, P(Te) — P(T), with Te representing the behaviour
T extended with action e. If a policy forbids a behaviour, it
should also forbid any behaviours that extend this behaviour.
Similarly, if a policy allows a behaviour, it should also allow its
prefixes (see also Fig. 1). Prefix-closedness implies that certain
types of theories will not be policies. For example, for any
behaviour T" and action e, the theory { P(Te), = P(T')} will not
be possible with a prefix-closed predicate P, and cannot serve
as a policy. Thus, a theory that allows an employee to enter
a room and then pick up a dongle, but forbids said employee
to enter said room, is not a policy.

We say that a policy is consistent if no contradictory
formulae can be derived from it.

Definition 4. A policy © is consistent iff there is no formula
¢ such that S+ ¢ and S F —¢.

A new policy can be formed from the union of a set of
policies, that is © = JI_; ©,. When the new policy O’ is
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Policy 1
PERMITTED

A

Fig. 3. A Venn diagram of a mutually consistent pair of policies. The union
of the two policies is an exhaustive policy, as there is no behaviour that is
neither permitted nor forbidden.

_4

consistent, we say that ©,...0,, are mutually consistent.

Policies can be represented in Venn diagrams of the space of
behaviours, where for each behaviour 7' it is indicated whether
T is permitted, forbidden, or undecided. When representing
multiple policies in the same diagram, one can visualise pos-
sible contradictions. For mutually consistent sets of policies,
the space can be divided into permitted, not permitted, and
unspecified. A mutually inconsistent pair of policies is shown
in Fig. 2.2

Next to consistency, we can also speak of exhaustiveness
of policies, when there is no behaviour that is neither per-
mitted nor forbidden. Exhaustive policies cover all possible
behaviours, and requiring a policy to be exhaustive makes sure
that any possible behaviour will be considered (Fig. 3).

Definition 5. A policy © is exhaustive iff for every behaviour
TeT,©FP(T) or©F-P(T).

In the area of security, problems with policies typically
enable what we call attacks. Using the definitions above, we
can define the notion of attack in terms of policies.

Definition 6. An attack on policy ©1 enabled by policy O is
a behaviour that conforms to ©s, but violates ©.

Typically, © is an incorrect refinement of ©;. This refine-
ment may have been explicitly designed as such, or it may be
a policy implicitly defined by the technology and people in an
organisation.

To be able to speak about the notion that a policy is a correct
refinement of another policy, we need notions of soundness
and completeness. Intuitively, soundness means that a refined
policy does not break any requirements of the high-level
policy, and completeness means that a refined policy covers
everything that the high-level policy covers. These notions are
defined purely on the syntactic level here, and thus do not have
the usual interpretation in logic of soundness and completeness
of theories with respect to models.

2See also [27] for an earlier example of using Venn diagrams in security
assertions.
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Definition 7. A policy ©2 is complete with respect to a policy
O1 iff for each formula ¢ such that ©1 F ¢, also O F ¢.

This basic logical framework gives rise to some simple
theorems, which we present here to provide a complete picture.

Theorem 1. If a policy ©s is complete with respect to a policy
©1 that is inconsistent, then ©4 is also inconsistent.

Proof: If ©1 is inconsistent, then according to Definition
4 there is a formula ¢ such that © - ¢ and ©; - —=¢. As O
is complete with respect to ©1, this will mean according to
Definition 6 that also (1) ©5 F ¢ and (2) ©5 - —¢. Therefore
©5 is also inconsistent. [ |
We call a policy sound with respect to another policy, if
it does not violate the constraints of this other policy (allows
a behaviour forbidden by the other, or forbids a behaviour
allowed by the other).

Definition 8. A policy ©2 is sound with respect to a policy
O1 iff the policy ©1 U Oy is consistent, i.e. if ©1 and O, are
mutually consistent.

When refining policies, soundness thus expresses that the
refinement does not go against the higher-level policy, whereas
completeness expresses that everything of the higher-level
policy is covered. Note that the soundness relation is symmet-
ric. This may seem counterintuitive, but as long as policies
are mutually consistent, they are sound refinements of each
other in the sense that they do not contradict each other’s
requirements (although they are usually not complete). This
signals something important. Although soundness seems to
be an important property to express when refining policies,
it is actually implied by the combination of consistency and
completeness. Intuitively, this can be understood by the idea
that if completeness holds for one policy with respect to
another, then the permitted/forbidden conditions on behaviours
must match for the behaviours that are covered by both
policies, and conflicts between the policies can only occur if
at least one of the policies is inconsistent. This is formalised
in the following theorem.

Theorem 2. If a policy Oy is complete with respect to a
consistent policy ©1, and O is consistent itself, then O is
also sound with respect to ©1.

Proof: We prove the inverted statement: if a policy O, is
not sound with respect to a consistent policy ©1, then either
O5 is not complete with respect to ©1, or O, is inconsistent.
If a policy ©2 is unsound with respect to a policy ©;, then
there exists ¢ such that ©; U Oy F ¢ and ©7 U O F —¢.
If ©5 is not inconsistent itself, then there must be a ¥ such
that ©1 - ¢, ©5 U is inconsistent, and Oy ¥ 1. Thus, there
is a formula ¢ that is derivable from ©; but not from ©s.
Therefore, ©2 is not complete with respect to ©1. ]

Definition 9. A policy O is a proper refinement of a policy
O1, if Os is consistent, and Os is complete with respect to

;.

It follows that a proper refinement is also sound. In prin-
ciple, this definition allows us to judge whether a policy

refinement is “correct”, using standard logic tools. However,
such an analysis would often be unnecessarily complex, as
many policies are stated in a limited number of formats.

IV. TYPES OF POLICIES

In many cases, we do not need the full power of first-
order logic to express policies. This also means that we can
avoid problems of indecidability. The most limited policies are
conjunctions of permitted or forbidden behaviours.

Definition 10. A simple policy is a set of sentences O of the
form P(T) or ~P(T).

A simple policy can be understood as assigning to each
behaviour a value (a) don’t care, (b) permitted, (c) forbidden,
or (d) contradiction.

Many policies allowing certain behaviour, however, require
that a certain result can be achieved, in relation to a business
goal. Often, it is not of essential importance how this result is
achieved. For example, there should be at least one possible
way to change the configuration of the e-mail server. This
means that security policies can forbid all but one of the
concerned behaviours, as long as this one behaviour remains
possible. We can thus have a situation where out of a set of
behaviours at least one should be possible.

Similarly, it would often be required that for an attack to be
prevented, at least one of the constituting atomic behaviours
(actions) should be disabled. Thus, a negative policy demand-
ing exactly this would require at least one behaviour in a set
of behaviours to be impossible. We call such “at least one”
policies extended policies.

Definition 11. An extended policy © is a set of sentences of
the form ¢1 V ¢o V ...\ ¢, where each of ¢; is of the form
P(T) or of the form —P(T), with T a behaviour.

Note that extended policies are only “extended” with respect
to simple policies, not with respect to the general notion of
policy defined in Definition 3. Extended policies are a subset of
general policies, and simple policies are a subset of extended
policies.

These types of policies are thus included in the general
notion of policy, specified on traces. However, many real-life
policies are not stated in terms of complete behaviours. Often,
we see policies that are rather defined on:

1) the permissibility of actions given the preceding trace
(“only people with a key should be able to open this
room’), or

2) on the states of the system caused by the traces (“sales
data should not end up outside of the organisation”).

This gives rise to two different kinds of policy that are not
contained in the general notion. A local policy is a policy that
specifies when a particular action can take place, based on the
preceding sequence of actions. A state policy is a policy that
specifies which states should be or should not be reachable.

Definition 12. A local policy is a theory T in first-order logic,
with behaviours T € T and actions e € £ being the terms
and L(_, _) a distinguished predicate over T x E.



A local policy L(T,e) thus expresses that action e is
permitted following trace 7.

In order to specify policies on states, we need to augment
the sequences of actions with an underlying system state
representation, which we call a system model. Note that we
only introduce the state representation at this point in the
paper, and we still stick with our original interpretation of
policies in terms of behaviours. However, in practice policies
are often specified on states, and to allow a translation from
such policies to behaviours, we need to define their relation.

Definition 13. A system model M = (S, Sy, E,—) consists
of a state space S, an initial state Sy, a set of events £ and
a state transition function —: S x £ — S.

We write S; = S; if there is a transition from state .S;

to state S; upon action e. We write S; KN Sy if there is
a behaviour T' = ey...e,, that leads from state S; to Sy by
multiple transitions upon ey...e,, respectively.

Definition 14. A state policy is a theory ¥ in first-order logic,
with states S € S being the terms and G(_) a distinguished
predicate over S.

In terms of our original definition of policy, a state policy
would permit one of the behaviours leading to the specified
state, or forbid all of the behaviours leading to the specified
state. It thus describes reachability of the state in the system
model.

Example 2. In the road apple example, there is a state
policy forbidding all states in which sales data is outside the
organisation. In terms of behaviours, the policy means that
such states should not be reachable. In the existing version
of the organisation, there are no local policies preventing
behaviours that lead to such states. The challenge here is to
define local policies that will do exactly this, for example, a
local policy forbidding the connection of non-company devices
to company computers (potentially enforced by physical dis-
abling). Even though this would not prevent the behaviour of
bringing devices to work (T), it would not allow the action of
connecting them (e).

In the following sections, we will outline how the different
types of policies can be compared against each other.

V. CHECKING CONSISTENCY AND COMPLETENESS

As will be detailed in the related work (Section VIII),
formalisation of completeness of policies at different levels
is one of our major contributions. Below, we discuss how to
assess consistency and completeness for the different types
of policies we distinguished. Our interpretation of policies in
terms of behaviours is essential here, and enables a model-
checking approach to finding mistakes.

Completeness of simple policies can be verified by checking
if all permitted and forbidden behaviours of a high-level policy
are also permitted and forbidden in the low-level policy. Don’t
cares in the high-level policy may be assigned any value in
the low-level policy (although the value contradiction would

3In [25), this is referred to as action e being enabled for trace T'.
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obviously make the low-level policy inconsistent, but not
incomplete). Thus, checking consistency and completeness for
simple policies is easy.

For extended policies, checking consistency requires the
construction of a simple policy matching the criteria imposed
by the extended policy. Verifying completeness of extended
policies requires checking whether for each sentence in the
high-level policy, there is a corresponding sentence in the low-
level policy of which the disjunctive elements are a subset
of those of the sentence in the high-level policy. Thus, the
low-level policy should be more restrictive in terms of the set
of behaviours of which at least one should be permitted or
forbidden.

The most interesting case, however, is checking consistency
and completeness of local policies against state policies. Local
policies (usually delegated to agents within the system) enable
or disable single actions, depending on the credentials, and
thereby enable or disable particular traces on global system
level. A local policy can for example state that only persons
with a key can enter a door. To check these for consistency and
completeness against higher-level policies, possible sequences
of actions need to be generated from the local policies, in
order to obtain global policies that can be compared against
state policies, for example stating that sales data should not
leave the organisation.

Definition 15. An implied global policy of a local policy T is
a policy © such that for each behaviour T and action e:

1) ©F P(e)

2) ©F P(Te) iff ©F P(T) and T+ L(T, ¢e),

3) ©F =P(Te) iff © - =P(T) or T+ =L(T\¢)

Note that the predicate P of the implied global policy
will be prefix-closed (if © = P(Te) then also © = P(T)).
Intuitively, part 1) of the definition states that, if an action is
locally permitted following trace 7, then either it should be
globally permitted following trace 7', or trace 1" should not be
permitted at all. Thus, either the situation in which the action is
allowed will not occur, or the action is enabled in that situation.
Part 2) states that if an action is locally forbidden following
trace 7', then it should be globally forbidden following trace
T'. In the latter case, it does not matter whether 7" is globally
permitted or forbidden, as T'e should be globally forbidden in
both cases.

Moreover, state policies also imply policies on sequences
of actions, namely those that lead to the specified states.

Definition 16. An implied global policy of a state policy Y in
system model M = (S, Sy,E,—) is a policy © such that for
each behaviour T':
1) if X+ G(S), then there exists a behaviour T such that
O+ P(T) and Sy = S
2) if X+ —=G(S), then for all behaviours T such that Sy L
S, ©F -P(T)

Note that the former clause can also be represented as an
extended policy (see Definition 11), where at least one of the
behaviours leading to the state should be permitted.

Example 3. For the road apple example, the implied global
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policy of the state policy “Sales data should not leave the
organisation” prohibits all behaviours that lead to such states.
The local policy that forbids connection of external devices to
company computers implies a global policy that prohibits all
behaviours that contain such actions. In this local policy, there
is no constraint on the preceding trace, such as when a key is
required to open a door.

To test completeness of local policies with respect to state
policies, the policies need to be translated to standard policies
in terms of behaviours. To do this, we need to determine
whether composite behaviours are permitted or forbidden
based on the regulation of individual actions by the low-level
policies. The local (low-level) policies are used to generate the
traces that they allow, and the states that are reachable. For
example, if a laptop is located in a room, and I cannot access
the room without the key, then the sequence of accessing
the room and removing the laptop is not permitted. However,
the sequence of asking someone the key, accessing the room,
and removing the laptop might be possible (permitted). If the
initial policies are only defined locally, this will not lead to
inconsistencies. Next, the permitted and forbidden traces and
states are tested against the state (high-level) policies, which
may or may not prove completeness. The policies are complete
if all permitted states are reachable, and all forbidden states
are unreachable. If a violation of the state policy forbidding
certain states can occur, this corresponds to a behaviour that
satisfies the local policies, but violates the state policies,
proving incompleteness, and suggesting an attack.

The question is which methods are most appropriate for
such an analysis. When all implied global policies would be
determined, consistency and completeness could be assessed
with standard logic tools. However, the explicit generation of
all behaviours that would be needed to specify the implied
global policies is very inefficient, as the possibilities for
interaction typically grow exponentially with the number of
entities in a system. Even in relatively simple systems, the size
of the behaviour space would therefore become prohibitively
large, and cyclic behaviours would require methods to cut
infinite traces.

A first step is therefore a simplification of the trace repre-
sentation. It would then still be possible to use existing tool
support, but we concluded earlier from a small experiment that
smarter solutions are needed for specific cases ([4], ch. 4). In
the following, we present a solution for the most typical case,
i.e. comparing local policies against state policies (only people
with a key can open this door vs. sales data should not end up
outside the organisation). Although this is not a fully general
solution, it covers a typical security scenario: behaviours that
lead to a state in which security is violated should not be
possible. Therefore, this is a case that is of particular interest
to the security community.

Furthermore, the proposed approach closely links up with
existing methods in the field, such as attack trees. As the trans-
lation of local policies to global ones will generate particular
enabled traces, notably ones that conflict with existing global
policies, the procedure is exactly the same as procedures that
are used for generating attack scenarios from system models

with local policies. The only difference here is that we make
the notions of global and local policies explicit, providing
a sound conceptual and formal framework for existing ap-
proaches to attack generation. We thereby explain how existing
methods of analysis for finding attacks can be expressed in
terms of policy alignment.

VI. ATTACK GENERATION
A. Definitions

System models for attack generation can be understood
as completeness checkers for policies. They will compare
local decisions (local policies) against global requirements
(state policies). Typically, a system model underlying attack
generation methods is specified as a graph and the local
policies are assigned to nodes in the graph [12], [13], [14].
The edges, which represent access relations between entities,
then represent the system state. For example, an edge between
a person and a room would indicate that the person has access
to the room. In case the local policies assigned to the nodes are
dynamic, they are also part of the state. Such system models
thus allow the representation of both local policies assigned to
agents, as well as state policies on the state of the system as
a whole. Based on the model and the definitions above, they
can be translated to regular policies.

To enable a completeness analysis, the system infrastructure
is represented with the imposed (local) policies. As said, these
are usually formulated in terms of credentials, locations, and
identities required for an action e. Possession of the required
items can be derived from the preceding trace. For example, a
door connects two rooms (infrastructure), and a key is needed
to open the door (policy). Whether the agent will have the
key will depend on the preceding trace. The state of the
infrastructure can thus change over time, for example if agents
obtain keys. To connect the state policies and the local policies,
we specify system model states in terms of attributes [28],
i.e. edges representing access relations between nodes in the
graph. State policies can then refer to the attributes of the
states considered (e.g. sales data not being outside of the
organisation), and local policies can refer to the attributes as a
means to represent the preceding trace (e.g. a person being in
possession of a key). An action now consists of the satisfaction
of an attribute, or the addition of an edge to the graph.

The system’s local policies are represented as preconditions
of attributes in terms of other attributes. To enable the connec-
tion of different attributes in a trace/behaviour, the attributes
are annotated with the preconditions that can lead to the
attribute being satisfied. For example, the attribute representing
that I have access to a room has the preconditions that I have
access to the hall, and that I have access to the key.

Definition 17. An attribute a is a pair (name, precondition).
The precondition is specified as a set of sets of other attributes,
corresponding to a disjunctive normal form (disjunction of
conjunctions). A state is expressed as a predicate S on
attributes. An action consists of the transition of the predicate
value of one attribute from L to T. If the precondition is T,
the attribute is satisfied in the initial state.



The set of attributes for a particular system is denoted .A.
We often write only the name to refer to an attribute, omitting
the precondition for brevity.

The state representation thus consists of a representation
of whether attributes are satisfied (whether edges exist in the
graph). State policies can often be understood as predicates
over attributes: either (a) some attribute should be satisfiable
(being part of an essential business process), or (b) it should
be unsatisfiable (being a security threat). High-level policies
then state that either (a) at least one behaviour leading to
the satisfaction of the attribute should be permitted, or (b) all
behaviours leading to the satisfaction of the attribute should
not be permitted.

As in [28], it is assumed that satisfied attributes remain
satisfied forever. This is called the monotonicity assumption,
and it is a useful heuristic to prevent state explosion and
infinite loops. Only in cases where an agent has to go back
to a previous location, this assumption would not find the
“real” traces, and actions for going back would have to be
added by an additional procedure. Monotonicity leads to an
overapproximation, finding traces that cannot occur in practice,
when an agent is not able to go back. In such cases, the
procedure will conclude that certain traces are allowed by the
low-level policies, whereas they are actually not. If such a
trace is forbidden by the high-level policy, the procedure will
conclude that the low-level policies are not complete with
respect to the high-level policy. Conversely, when a certain
trace should be possible according to the high-level policies,
it may be found that the low-level policies are complete (they
seem to permit the behaviour), whereas they are actually not.
However, such cases are very rare in practice. They would be
relevant, though, when focusing on systems that attempt to
prevent an intruder from escaping with his catch. Here, we
are primarily interested in testing whether gaining access is

possible.
Attributes  thus express properties of the world
that may become satisfied over time. In order to

make attributes workable, they have to be generalised
beyond individual objects. For example, the attribute
(Steve_in_room, {{Steve_in_hall, key_in_hall}})

states that Steve can enter the room when he is in the
hall and the key is in the hall. (Remember that the
precondition is a set of sets of attributes corresponding to
disjunctive normal form.) It should be generalised to express
(in_room(z), {{in_hall(x),in_hall(key)}}), with x a
variable. This is then an attribute femplate that covers many
individual instances.

When expressed in logic, this can also be written as
Vo : in_hall(x) A in_hall(key) — in_room(zx). In this
case, state transitions are replaced by derivation steps. We
can even generalise one level higher, and then obtain Vz :
in(x, hall) Ain(key, hall) — in(x, room).

If we have the “in” relation relating entities to groups of
entities as the only relation, we can represent the attributes by
a hypergraph, as in the ANKH system model [14]. Attributes
then represent which new group memberships are possible
based on which existing group memberships. The ANKH
model additionally constrains the policies by requiring that in
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order for a new group membership to be possible based on an
existing group membership, there must exist an entity that is a
member of both groups already, and this entity must explicitly
allow the new membership based on specified preconditions.
In this way, different system models constrain the attributes
(and thus the associated preconditions) in different ways a
priori, typically based on some notion of proximity of entities
(actions cannot take place from a distance).

Attributes give rise to another type of policy, specifying
whether attributes are permitted or not:

Definition 18. An attribute policy is a theory ® in first-order
logic, with attributes a € A being the predicates.

Typically, state policies can be expressed more compactly
as attribute policies: if sales data should not leave the organ-
isation, we can prohibit all states in which the sales data is
outside, but we can write an equivalent attribute policy that
simply prohibits the attribute.

B. Method

With respect to the goal of describing attack generation
as policy completeness checking, we now know how state
representations with attributes in system models are related
to policies in our policy alignment framework: local policies
describe how attributes can change (which actions are pos-
sible), and attribute policies (state policies) describe which
attributes should or should not occur (which states are required
or forbidden).

By understanding actions as satisfaction of attributes, we
can now define a procedure for testing completeness of local
policies against state policies with system models (Algorithm
1). Informally, the algorithm is as follows:

1) assume all attributes with precondition T to be satisfied;

2) check which attributes now have their precondition sat-

isfied, and mark these as satisfied;

3) repeat until no more attributes can be satisfied;

4) check if attribute policy violated by final set of satisfied

attributes;

5) if so, trace back the attribute to its original preconditions,

and output the possible attacks in terms of sequential
satisfaction of attributes.

Algorithm 1. Attack generation / completeness checking
Inputs:

o system model with attributes A;

o simple attribute policy ®.

Outputs:

o violated policy sentences of the attribute policy, and

corresponding possible attacks.
Local variables:

o set of satisfied attributes A+;

o set of newly satisfied attributes Ay ey

o set of attributes to be checked plus their relevant precon-
dition sentence A.p,;

o iteration number i;

o tracking table M containing entries of the form (attribute
name, iteration number, satisfied conjunctive clause);
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o conflicting sentences in policy C;
e possible attacks T
o result, consisting of tuples (conflicting sentence, possible
attacks) R.
Algorithm (pseudocode):
M« 0
AT +— 0
Apew < {(n, T) € A}
140
repeat
AT« AT U A cw
A <~ {(n,P,p) | (n,P) € ANAT Ap€ P ApN
Anew # 0}
A’I’L(iﬂ) <; @
for (n,P,p) € A.p, do
if p C At then
M+~ M U{(n,i,p)}
Anew — Anew U {(na P)}
end if
end for
1 1+1
until A,y =0
A~ <—ATU{_\G | aGA\AT}
C+{sed|ArU{s}+ L}
R+ 10
Jor c€ C do
T <« {(n,i,p) € M | (n,i,p) is a step contributing to
the final contradiction of c}*
R+ RU{(c,T)}
end for
return R

When an attribute policy is input to the model that prohibits
certain attributes, the analysis will aim at finding a behaviour
that is allowed by the local policies, but still leads to satis-
faction of the particular attribute (i.e. violates completeness).
In this case, we can easily check the completeness of local
policies with respect to such a policy by the above procedure.
We only have to judge whether the corresponding attribute is
satisfied after execution of the method. If we wish to know
what behaviours can lead to the satisfaction of the attribute,
we can backtrack the analysis following the preconditions of
the attributes, up to the point where all remaining attributes
have precondition T [4, p. 78]. It would be interesting to
investigate how such an analysis might work for other than
simple attribute policies.

By following the traces back from prohibited states towards
the initial state, one can build an attack tree [29], [10], in which
all the possibilities for violating the associated state policy
are visualised. In practice, because attributes can occur in
preconditions multiple times, the attack tree may not actually
be a tree in the mathematical sense, but rather a graph.

4For additional details, see [4], Algorithm 2, page 78. For sentences
consisting of non-negated attributes (stating that a certain attribute should be
satisfiable), it is not possible to generate scenarios explaining why the policy
is not satisfied (there is no concrete “counterexample”). It might be feasible
to say something about the “closest possibility” of satisfying the attribute,
but that would be future work, which the general structure of the algorithm
allows.

However, as the notion of attack graph has a different meaning
in security analysis, we call the resulting structures attack trees
anyway.

Example 4. The state policy in our running example (the
road apple attack) forbids all sequences of actions that result
in the sales data being outside of the organisation. This can
be expressed as an attribute policy (with states interpreted as
predicates over attributes):

O = {—in(salesdata, outside)} ()

which is equivalent to a state policy forbidding all states
where this attribute is satisfied:

S={VSeS:

S(in(salesdata, outside)) = T — =G(S)} @)

which is again equivalent to a policy forbidding all be-
haviours leading to such states:

O={VI'eT,S5cS:
S(in(salesdata, outside)) = T A (So L S)
— =P(T)}

3

If all of the actions constituting one such behaviour are
possible (permitted by the local policies), they constitute an
attack on the high-level policy. Using graph-based system
model analysis, such attacks can be determined by Algorithm
1. In the road apple example, the road apple attack is enabled
by the local policies, and will therefore be output by the
algorithm. Depending on the other entities represented in the
model, other attack scenarios might be possible as well. The
high-level and low-level policies are thus not properly aligned.
To achieve alignment, at least one of the actions constituting
the road-apple attack should be disabled by a local policy.
Thereby also other attacks containing this action are disabled.
The analysis can be rerun with simulated countermeasures
to determine the overall effect of such measures on possible
attacks.

In Fig. 4, the possible behaviours violating the high-level
policy are represented in an attack tree for the road apple
example [14].

Similarly, it may be checked whether it would be possible
to send aggregate sales data to the tax office. Even with
security policies in place, high-level policies may state that
there should still be a way to do this. In this case, the analysis
amounts to checking whether something is possible rather
than impossible. In this case, the high-level policy actually
states that at least one behaviour leading to the target situation
should be possible, i.e. it is an extended policy.

In case we wish to disable the road apple attack, at least one
of the constituting actions should be disabled, giving a negative
extended policy. When composing such policies (required to
disable attacks), the question whether the policies are still
consistent becomes relevant.
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Fig. 4. An attack tree for the road apple example (adapted from [14]). The
attack tree represents the possible behaviours that violate the policy “no sales
data outside organisation”. The grey boxes are attributes with precondition
T (initially satisfied attributes). Arrows point to attributes required by the
precondition of their originating attribute.

C. Scalability

We have run experiments with comparing local policies
against attribute policies using the Portunes system model [4].
This analysis is aimed at finding a violation of a state/attribute
policy that is permitted by the local policies. With standard
model checking tools, experimental results show a O(NY)
complexity. IV represents the number of nodes in the model,
and we assume that the number of local policies is in the
same order. With dedicated algorithms, with theoretical worst-
case complexity of O(N*), the experiments give O(3.3) and
O(1.7) for constructed examples with expected bad and good
scalability behaviour, respectively.

In these algorithms, the monotonicity assumption [28] sim-
plifies the calculations by requiring that edges (attributes)
can only be added to the graph of the system model, not
removed. This is adequate for most practical cases. Most
of the complexity lies in calculating all satisfiable attributes.
When this has been done, finding out which local policies are
responsible for the violation of a different state/attribute policy
is relatively cheap (O(N?)). For details, see [4, ch. 4].

VII. APPLICATIONS

In summary, the framework of policy alignment provides a
formal foundation for the analyses finding attack scenarios in
socio-technical systems. The present formalisation provides a
theoretical foundation in terms of:

« explicit definition of policies in terms of behaviours;

o description of high-level and low-level policies in terms
of permitted and forbidden behaviours, thereby explicat-
ing the link between high- and low-level policies;
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o understanding of attack generation as generation of be-
haviours that violate the high-level policies (typically
state/attribute policies).

Based on the outline above, different applications of our
formalisation of policy alignment are possible, or will become
possible through further efforts.

A. Predicting attacks by misalignment analysis

As outlined above, the completeness analysis of local poli-
cies against global policies can be used for predicting possible
attacks in socio-technical systems. Although such methods
were proposed before, we are the first to formalise this idea in
terms of incompleteness of policies. Besides the basic analysis,
actually observed traces can be used to test whether the system
conforms to the policies (cf. [30]).

B. Attack trees as policies

Attack trees [29] are trees that show how an attacker can
reach a certain goal (root node). The tree splits when an
attacker has to execute multiple actions (AND node) or can
choose between actions (OR node) in order to achieve a goal.
Mauw and Oostdijk [10] provided a formal semantics for
attack trees. The semantics of an attack tree is a multiset of
actions, namely those that lead to the target situation of the
attack tree.

In our work on policy alignment, we are interested in
policies that separate between permitted/forbidden or possi-
ble/impossible behaviours. An attack tree can therefore also
be seen as a policy that allows exactly the behaviours of its
semantics. As a policy, it may be conflicting with a policy
that forbids such behaviours. In particular, higher-level policies
will typically prohibit behaviours that lead to a situation
represented as the goal of an attack. In this case, the behaviours
described by the attack tree will conflict with the higher-level
policy.

Conversely, and attack tree may also be seen as a policy
forbidding the behaviours that constitute the tree, i.e. all the
behaviours that achieve the goal of the attack. The attack tree
then becomes a specification of defensive measures needed
to prevent the attack. Such a policy will be the union of a
set of extended policies, namely for each behaviour reaching
the goal, at least one of the constituting actions should be
forbidden.

C. Representing multi-level authorisations

Normally, the formal study of authorisations is limited to
authorisations on one level: persons are mapped to roles,
and roles are mapped to access to objects (see [15]). Even
when refinement is discussed, as in [31], this refinement
only considers single actions and the associated authorisations.
However, in organisations one typically wants certain persons
or roles to achieve certain outcomes, but at the same time
one wants to prevent other results. Thus, when someone is
authorised to send aggregate sales data to shareholders, this
person should be permitted to execute all actions constituting
one of the possibilities to achieve this goal. In other words,
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there is an alignment question here in terms of how to
define the low-level authorisations such that this high-level
authorisation is effectuated. Moreover, one will often want
this to happen without giving low-level authorisations that can
lead to undesirable outcomes (insider attacks). This provides a
detailed account of how to implement least privilege by means
of policy alignment with multiple authorisation levels.

D. Quantification

Besides describing policies in terms of permitted and for-
bidden, it would be interesting to look at quantitative values.
These values would then represent the difficulty or cost
of a behaviour [32]. Policies could specify a maximum or
minimum difficulty for sets of behaviours, where minimum
difficulty would correspond to a security requirement (things
that should not happen should be difficult), and maximum
difficulty would correspond to a usability requirement (things
that should happen should be easy). Fuzzy logic could be used
to support such policies.

Consistency and completeness will have different meanings
for quantified policies. Rather than binary values, they will
now also be quantitative values indicating “goodness” of poli-
cies. This will also require different definitions of consistency
and completeness.

These quantification efforts correspond to the labelling of
attack trees with different types of values (likelihood, effort,
cost, reward, etc.). However, they are now part of a model of
the socio-technical system infrastructure rather than of a pre-
defined attack tree. This means that attack trees will first have
to be generated from the system model in order to determine
the total difficulty of particular attacks. Heuristics may need
to be applied to keep the model checking manageable.

E. Policy design

Ultimately, the goal of this work is to allow system design-
ers to specify low-level policies based on high-level policies
defined on the management level organisations. A full-fledged
method for achieving this goal will require further research in
the areas outlined above.

VIII. RELATED WORK
A. Policy alignment

Abrams and Bailey [20] discuss the refinement of security
policies across different levels of abstraction, where lower-
level policies are implementations of higher-level policies.
They discuss consistency and conformance of policies between
levels. They do not formalise these relations, and neither
do they discuss the possibility that not all behaviours will
be categorised as permitted or forbidden at higher levels of
abstraction. Nunes Leal Franqueira and Van Eck [33] dis-
cuss alignment of policies between different domains (access
control, network layout, and physical infrastructure) based on
the formalism of Law Governed Interactions. They only focus
on expressing policies from the different domains in a single
language, not on refinement and completeness of policies.
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B. Security logics

Cholvy, Cuppens and others [6], [7] focus on consistency
of security policies and the merging of policies based on
deontic security logics, using an operator for obligation (where
forbidding is expressed as obligation not to do something,
and permission is expressed as not being obliged not to do
something). They focus on logical access, and discuss whether
it is possible for situations to occur in which there is a conflict.
For example, if a user cannot downgrade a file, but a system
security officer (SSO) can, and it is at the same time specified
that a SSO is also a user, then if there exists an agent with
the role of SSO, and a file, then downgrading the file by the
SSO is both permitted and forbidden.

We are also interested in conflict situations, but (1) we focus
on socio-technical systems, with multi-step attacks, including
physical access and organisational policies, and (2) we relate
our work to model checking instead of theorem proving. In
addition, we do not discuss obligatory actions, as we are pri-
marily interested in the possibility or impossibility of attacks
through permitted and forbidden actions. We thus do not need
to use deontic logic, as we only consider whether actions are
permitted or forbidden at a specific level of abstraction. At a
high level, this has a normative meaning (“sales data should
not (cannot) leave the organisation”); at a low level, this has a
descriptive meaning (“this door can only be opened with the
key”). This difference does not impact the analysis, as we only
focus on the alignment of the policies between the different
levels of abstraction.

C. Security policy refinement

Several papers discuss policy refinement for specific scenar-
ios. For example, Craven et al. [31] discuss policy refinement
in a database setting, and Laborde, Barrére and Benzekri focus
on policy refinement in networks [34]. Bonatti, De Capitani
di Vimercati and Samarati [5] focus on the composition of
multiple policies, where policies may be underspecified. These
approaches achieve major improvements in the flexibility of
reasoning on security policies, by providing representations of
policies at different levels of abstraction that are specific to the
context considered. Here, however, we are interested in multi-
step scenarios in socio-technical systems, and because of the
complexity and the many different types of actors involved,
we need a more general formalisation. In particular, previous
work discusses policies that are already formulated in terms
of subjects, objects, and individual actions, but refines these
following refinement of the subjects, objects and actions. For
policy alignment and refinement to work in socio-technical
system scenarios, we are interested in how to refine policies
that can be expressed in terms of more complex behaviours
(i.e. sequences of actions).

D. Consistency and completeness

Checking consistency of security policies has been dis-
cussed in the literature from an intensional / theorem proving
point of view [6], [7]. From a model-checking point of view,
consistency of policies depends on the space of behaviours.



Therefore, the possible behaviours first need to be generated
to determine whether the policies imposed on the behaviours
are consistent. In practice, conflicts could for example occur
when particular policies apply in emergency situations, such
as doors that are automatically unlocked, whereas security
policies would require the doors to be closed (i.e. allow no
behaviours that involve opening the doors).

Checking completeness of security policies is less well
studied, because the notion of policies at different levels of ab-
straction has not been taken into account. Where completeness
is mentioned, e.g. in [15], [35], it refers to what we have called
exhaustiveness. Formally discussing completeness of policies
at different levels is therefore a major contribution.

E. System models

System models [12], [13], [14], [36] are representations of
an organisation’s technical and social infrastructure, aimed at
finding security vulnerabilities in the infrastructure. Attacks (or
attack trees) can be automatically generated from such models.
The models check a high-level policy (e.g. “Sales data should
not leave the organisation”) against low-level policies (e.g.
“This door can only be opened with a special key”). Intuitively,
this can be understood as a form of policy alignment, and one
of our important contributions is a more precise definition of
this relation.

As we are interested in possible policy violations, or
(in)completeness of refined policies with respect to high-level
ones, we focus on an extensional interpretation of policies
here, i.e. in terms of the set of behaviours that they permit or
forbid. The extensional interpretation also makes it possible to
visualise the policies in Venn diagrams, by showing policies in
terms of permitted and forbidden subsets of behaviours. It also
enables model checking for consistency and completeness, by
systematically exploring the space of behaviours.

IX. CONCLUSIONS

In this paper, we formalised the notion of security policy
alignment. Policy alignment has been known as an approach
for assessment of organisational security policies, but a formal
foundation was lacking. This meant that the areas of (informal)
policy alignment, security logics, and system models remained
implicit. Our formalisation provides a formal foundation for
model-checking approaches to finding security weaknesses in
complex socio-technical systems, based on the up to now
informal notion of security policy alignment.

Our formalisation of security policies is based on theories in
first-order logic, with a permission predicate over behaviours.
Security policies can then be checked for consistency and
completeness. We showed that soundness can be expressed as a
combination of these. Completeness of local policies delegated
to agents can be checked with system models, by comparing
the traces that they allow against global policies stated in terms
of states or attributes. This provides a clear foundation for
the relation between system models and security policies. To
allow other than black-or-white policies, which is typical when
policies are delegated to humans, we sketched possibilities to
transform the definitions and checks to a quantitative setting.
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The model could further be extended with policies repre-
senting obligation (cf. [9]). This is especially relevant for local
policies, as these denote which next actions are permitted
given the preceding trace (expressed in the attributes of the
state). Based on the preceding trace, it could also be specified
that a particular action is compulsory. In the behaviour, such
an action should then always be executed first, before any
other actions can take place. This would then in turn imply a
global policy, by preventing certain behaviours (namely those
that do have different actions before the compulsory one).
However, such an analysis is not completely trivial within the
proposed framework, especially in relation to the monotonicity
assumption that is introduced to keep the analysis scalable. If
attributes can only be added, but not removed, there would
not be any reason to execute actions in a particular order,
as the preconditions will never become false again after they
were true once. For obligation to be meaningful, the obligatory
action would have to disable others (such as when locking
a door), and therefore requires lifting of the monotonicity
assumption. Whether this keeps the analysis scalable remains
to be seen. Still, we have shown that for many security
problems, focusing only on what is possible or permitted
already provides valuable results.

Another topic for future work is the integration of the
present formalism of policy alignment with our previous work
on system refinement [23]. It would then become possible to
analyse whether an attack that would be possible/impossible
in a system would still be possible/impossible in a refinement
of that system.

We also hope to further develop quantitative models for
security analysis, based on the present formalisation. Such
models would be able to assist companies in estimating the
likelihood, difficulty, and damage of attacks, as well as the
effectiveness of countermeasures in reducing the values of
these variables.
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All the major concerns about the paper which I reported in the first round
of review have been addressed, and in my opinion the paper looks almost
fine for appearance in the journal after this major revision. There are
however some small points that still need to be addressed by the authors.
Please see comments below.

- Readability of the paper has been improved by the major revision. However,
some points still remain little weak. For instance, third paragraph on

page 7: "the explicit generation of all behaviours (...) is very inefficient.
smarter solutions are needed (...)." This claim should be a little

expanded. I would like to see why the generation is inefficient and, since

this represents a limitation of the model, a justification of the choice of
focusing on the comparison between local and global policies (e.g.,

generality of the solution).

This part has been extended. Also, at several other points in the paper connections between
topics have been highlighted.

- There are still some typos around the paper. For instance

(list not exhaustive):

* pag. 7: "behaviours" -> "behaviors"

* pag. 7: pending bracket, "policy alignment)." -> "policy alignment."

Several typos have been fixed. We have maintained British spelling for the time being.
- [ appreciated to see examples and the algorithm set in appropriate

frames. However, Algorithm 1 is still very informally written. I suggest

to write it a little more formally, for instance adopting the notation

introduced in the paper so that to give it a sense

We have added pseudocode for the algorithm.

- In Ref.[5] there is a mistake in the name spelling of one of the paper

authors. the spelling "S. D. C. di Vimercati" is erroneous, while it

should be "S. De Capitani di Vimercati"
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Abstract—Security policy alignment concerns the matching of
security policies specified at different levels in socio-technical
systems, and delegated to different agents, technical as well as
human. For example, the policy that sales data should not leave
an organisation is refined into policies on door locks, firewalls
and employee behaviour, and this refinement should be correct
with respect to the original policy. Although alignment of security
policies has been discussed in literature, especially in relation to
business goals, there has been no formal treatment of this topic
so far in terms of consistency and completeness of policies. On
the other hand, where formal approaches are used, these are not
applied to complex socio-technical systems, but rather to well-
defined access control scenarios. The formalisation of security
policy alignment for socio-technical systems is our contribution in
this paper. Our formalisation is based on predicates on sequences
of actions. We discuss how this formalisation provides the
foundations for existing and future methods for finding security
weaknesses in socio-technical systems induced by misalignment
of policies.

Index Terms—Attack trees, security logics, security policies,
security policy alignment, security policy refinement, socio-
technical systems, system models.

I. INTRODUCTION

Complexity in socio-technical systems is increasing. Sys-
tems composed of information, physical properties and hu-
man behaviour have always been sophisticated, but recent
developments make a real difference. Outsourcing and service
composition cause dissolution of boundaries between organi-
sations. The proliferation of mobile devices causes dissolution
of boundaries between the private and the public sphere,
between work and home. Convergence of access control
mechanisms, as well convergence of bio-, nano- and info-
technologies cause dissolution of boundaries between different
technologies. These trends leads to an explosion of the number
of possible interactions.

When considering the security of information in such socio-
technical systems, developments such as working from home,
bring-your-own-device and cloud computing lead to increas-
ingly complicated information security problems. One has
to deal with propagation of access rights in complex attack
scenarios: attackers may exploit vulnerabilities at different
levels, and attacks may include physical access and social
engineering. This is already the case even in relatively simple
scenarios. For example, in the road apple attack, an attacker
will leave infected dongles around the organisation’s premises.

Wolter Pieters is with the Energy and Industry group, Faculty of Technol-
ogy, Policy and Management, Delft University of Technology, Netherlands
(e-mail w.pieters@tudelft.nl). Trajce Dimkov is with Deloitte, Netherlands
(e-mail dimkovtrajce@gmail.com). Dusko Pavlovic is with the Information
Security Group, Royal Holloway, University of London, UK, and the Dis-
tributed and Embedded Security group, Faculty of Electrical Engineering,
Mathematics and Computer Science, University of Twente, Netherlands (e-
mail d.pavlovic@rhul.ac.uk).

When an employee picks up a dongle and plugs it into a
company computer, malware will send out all the information
it can find. The possibilities for such multi-step attacks in
increasingly complex systems come with the important ques-
tions how to manage information security policies in complex
situations, and how to check whether the security policies in
place are adequate.

The question of adequacy of security policies (i.e. whether
existing policies provide sufficient protection against the tar-
geted threats) can be addressed from the perspective of se-
curity policy alignment. Security policies may be stated at
different levels of abstraction, where higher-level policies are
refined into lower-level policies. For example, the policy that
sales data should not leave the organisation is refined into
policies on door locks, firewalls and employee behaviour. In
security policy alignment, security policies are tested against
each other, and against business goals, in order to determine
whether they match the associated constraints. Informal ap-
proaches to assess security policy alignment already exist
(e.g. [11, [2], [3], [4]). However, like in many other socio-
technical ‘aspects of information security, a formalisation of
the concepts is lacking. On the other hand, where formal
approaches are used, these are often limited to fairly simple
logical access control problems [5], [6], [7], [8]. In these
frameworks, permission is discussed in terms of single actions,
but not sequences of actions. This reduces the value of the
notion of policy alignment in inspiring formal analysis of
information security in complex systems, where multi-step
attack scenarios are typical. Also, the relation between policy
alignment, security logics, and model checking approaches
remains unclear.

Solhaug and Stglen [9] do discuss policies in terms of
sequences of actions. Their framework allows refinement of
both systems and policies, based on UML specifications.
However, they do not explicitly address security, and therefore
do not support essential concepts in this field. In particular, we
need notions of completeness of policies, and attacks in case
of incompleteness, and the notion of policies on system states
rather than traces.

To resolve this situation, and make the connection between
the different approaches explicit and precise, we provide a
formalisation of security policy alignment in arbitrary types
of (socio-technical) systems, by providing mathematical def-
initions of the central concepts, as well as the relations
between those. This can be seen as an effort complementary
to the formalisation of attack trees by Mauw and Oostdijk
[10] and attack-defense trees by Kordy, Mauw, Radomirovié
and Schweitzer [11]. Whereas attack trees represent possible
undesirable behaviours, they do not contain an explicit notion
of policy or permitted behaviour. This extension of our formal
understanding is necessary to reason about the matching be-



tween different policies in a system, and the relation between
policy mismatches and attack scenarios.

Our approach focuses on the expression of security poli-
cies at different levels of abstraction, specifying whether
behaviours are permitted or forbidden, and the consistency
and completeness of such policies with respect to policies
at other levels. We define policies on traces (sequences of
actions) rather than individual actions, such that both high-
level policies (“‘Sales data should not leave the organisation™)
and low-level policies (“This door can only be opened with
the right key”) can be expressed in the same framework. We
make a distinction between local and global constraints on
traces (see section IV). Traces are generated from a system
model, which we leave implicit until section VI. Existing
socio-technical system models can be plugged in for this
purpose [12], [13], [14].

We make no distinction between descriptive and normative
policies (e.g. “The door can only be opened with the key”
versus “It should only be allowed to open the door with the
key”), as this is only a matter of abstraction: what is normative
on a high level is implemented by descriptive policies at a
lower level, and when these lower level policies are further
refined, they become normative in turn. This allows us to
express policies in a relatively simple framework. Similarly,
security mechanisms are seen as low-level security policies,
and, indeed, such low-level policies can enforce multiple high-
level policies, and there may be several possible low-level
policies that enforce the same high-level policy [15].

Although the main aim of this paper is theoretical, in the
sense that we provide formal foundations for policy alignment,
it has substantial practical implications in terms of connecting
existing methods for security analysis, as well as in providing
opportunities for future applied research in this area.

In section II, we introduce the concepts involved in security
policy alignment, as well as a running example. In section III
we provide the basic formal definitions, including consistency
of policies, completeness and soundness of policies, as well
as their relations. In section IV, we distinguish between
different types of policies, which has practical consequences
for methods of analysis. Model checking consistency and
completeness is discussed in section V, with procedures to
generate attacks from mismatches between global policies and
local ones highlighted in section VI. In section VII, we discuss
possible applications of the framework, followed by related
work (section VIII) and concluding remarks (section IX).

II. SECURITY POLICY ALIGNMENT

Organisations protect sensitive information by means of
describing and implementing security policies. Policies can be
defined at different levels of abstraction. High-level policies
describe the assets of the organisation, as well as desirable
and undesirable states of such assets (e.g. in the hands of
competitors). Human Resources (HR), Physical Security and
IT departments refine these policies into implementable, low-
level policies [16], which are enforced via physical and digital
security mechanisms and training of the employees. These
policies describe the desired behaviour of the employees
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(social domain), the physical security of the premises where
the employees work (physical domain) and the IT security of
the stored and processed information (digital domain) [17],
such that together these refinements realise the high-level
policies.

During the refinement and enforcement of the policies
mistakes may occur. These mistakes could be exploited by
both external parties as well as insiders [18] to achieve a
malicious goal. Therefore, the management needs assurance
that both refinement and enforcement are done correctly. This
assurance is achieved in two steps: auditing and penetration
testing. During the auditing process, auditors assess whether
the security policies produced by the departments are correct
with respect to the policies defined by the management. After
the policies from the departments have been audited, penetra-
tion testers test the security mechanisms correctly enforce the
policies from the departments.

The current work focuses on the auditing of security policies
by comparing formalised security policies in socio-technical
systems (e.g. organisations) and systematically checking the
refinement of high-level into low-level policies. We use the
informal description of policy alignment as presented by
Abrams, Olson and Bailey [20], [21] as a basis. The definitions
in this section provide informal intuitions for the reader’s
convenience; formal definitions will be provided in the next
section.

Definition 1. Security policy alignment is the process of
adjusting different security policies for a single system to each
other.

When considering a single level of abstraction, consistency
of the policies for a system is the most important concern in
policy alignment. When considering multiple levels, we speak
of policy refinement.

Definition 2. Security policy refinement is the process of
defining policies with a greater level of detail to support a
given general security policy.

The refinement step should be repeated for each level of
abstraction, starting from the policies defined on the highest
level of abstraction, toward policies to a lower level of
abstraction [20]. In refinement, completeness of lower-level
policies with respect to the original policy is an important con-
cern. Besides, lower-level policies should again be mutually
consistent. To simplify the presentation, we use just two levels
of abstraction for the policies, which we call high-level and
low-level policies. High-level policies are focused on security
goals with respect to the assets of the organisation (“Sales
data should not leave the organisation”), and low-level policies
constrain individual actions of actors (“This door can only be
opened with the right key”).

We do not focus on the problem of translating policies
from natural language into formal languages. The examples are
intuitive enough for explanation purposes, and the translation
of policies from natural to formal languages is a research
topic by itself [19]. An example of the interpretation problems
that can occur is provided in [4]. To what extent such a
process can be automated remains to be seen. In the framework
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presented in this paper, most policies are relatively simple
access relations (should not have access to..., will grant access
to...), and therefore we believe the translation problems are
manageable.

Policies are specified in terms of permitted or forbidden be-
haviours. A behaviour is a sequence of actions, where an action
is a discrete event that cannot be broken up further. Policies
divide the space of possible behaviours into behaviours that are
permitted, behaviours that are forbidden and behaviours that
are neither forbidden nor permitted. For high-level policies,
the set of behaviours may not even be specified yet, as high-
level policies are often stated in terms of all behaviours
that have an undesirable outcome. For example, a high-level
policy may state that all behaviours leading to the sales data
ending up outside the organisation are forbidden, without
specifying what exactly these behaviours are. Depending on
the refinement of the system into components [22], [23], it
will then become possible to tell which behaviours actually
lead to the undesirable outcome.

When a system is specified in more detail, either by
designing the system or by empirically investigating it, also
the policies will re-appear at lower levels. Such low-level
policies are policies that are delegated to system components,
such as doors, firewalls, and humans. Rather than specifying
what is permitted or forbidden depending on the outcomes
of a behaviour, low-level policies typically permit or forbid
actions based on the executing agent, the location, and/or
the credentials. Also, low-level policies are typically more
exhaustive, in the sense that more behaviours will be explicitly
forbidden or permitted than in the high-level policies. In this
way, the number of behaviours with unspecified permission
will be reduced. When low-level policies are specified in terms
of individual actions rather than complete behaviours, they still
apply to behaviours as well: a behaviour is allowed by the low-
level policies if all the actions it consists of are allowed by the
low-level policies, and a behaviour is forbidden by the low-
level policies if at least one of its actions is forbidden by the
low-level policies.

In this paper, we assume actions to be atomic events on a
single level of abstraction. Although actions can be specified
at different levels when discussing system refinement, for
security policy alignment we are interested in the refinement of
the policies, not the actions. This refinement occurs primarily
in terms of different levels of policies, namely policies that
refer to the actions themselves, and policies that refer to
the outcome of actions. In this context, stating that a certain
behaviour or outcome is not permitted is equivalent to stating
that the corresponding sequences of actions are not permitted,
on the chosen level of abstraction. The translation of actions
into a single level of abstraction will not be discussed further
here.

As an example of policy alignment, suppose an organisation
has a high-level policy that enforces a behaviour: Aggregate
sales data should be given to all shareholders. With the
introduction of a policy that forbids a behaviour: Sales data
should not leave the financial department the set of high-
level policies is not consistent anymore. There is a conflict
between the two policies, because the first policy forbids the

sales data leaving the financial department, while the second
policy requires some of the sales data to leave the organisation.
This is an example of misalignment by inconsistency.

A high-level policy might also be refined into overly permis-
sive or overly restrictive low-level policies, which introduces
an opportunity for an adversary to violate the high-level policy
by means of an attack. We consider attacks as sequences of
actions that conform to a refined set of policies, while violating
a higher-level policy.

Example 1. As a running example, we consider a variant of
the road apple attack [24]. This attack consists of the following
sequence of actions:
1) Attacker prepares dongles with malware and the com-
pany logo;
2) Attacker places dongles in a publicly accessible location
(say canteen);
3) Employee takes one dongle and plugs it into computer;
4) Autorun installs rootkit on computer;
5) Rootkit acquires sales data;
6) Rootkit encrypts sales data;
7) Rootkit sends encrypted sales data out (firewall permits
encrypted egress traffic);
8) Attacker receives encrypted sales data.

A high-level policy of the organisation states that sales data
should not leave the organisation. If all of the above actions
are possible, they constitute a violation of the high-level policy.
In this example, overly permissive low-level policies such as
allowing employees to bring storage devices to work and
allowing dongles to be plugged in the computer allow the
violation of the high-level policy. There is thus a misalignment
of policies by incompleteness.

This general overview provides the most important intu-
itions for our approach to policy alignment. We will define
the associated notions of action, behaviour, and policy more
precisely in the following.

III. FORMAL DEFINITIONS

In order to formalise policy alignment, we consider the
concepts of action, behaviour, and policy. We then define poli-
cies as first-order logic theories with permission predicates on
behaviours. We will define alignment in terms of consistency
and completeness of policies. Our notation is similar to the
one in [25].

Consider a set of abstract atomic actions & (for events).
We will call sequences of actions behaviours, with e denoting
the empty behaviour.! The set of all possible behaviours is
denoted 7 = £ (for traces). For a behaviour T € T, we use
the predicate P(7') to indicate that T is permitted.

Definition 3. A policy is a theory © in first-order logic, with
behaviours T € T being the terms and P(_) a distinguished
prefix-closed predicate over behaviours.

! Although [10] use multisets of actions, we consider order important here,
which will become clear when discussing the notion of local policies. We may
wish to generalise sequences to partially ordered multisets in future work.
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A visualisation of prefix-closedness of the permission predicate. If a

Fig. 1.
policy would forbid Action2 in the context of a preceding Actionl, it would
effectively forbid all behaviours with prefix (Actionl,Action2). However,
Action2 might be permitted when, say, Action5 would precede it instead.

a

Possible behaviours

Policy 1
PERMITTED

olicy 2
FORBIDDEN

Fig. 2. A Venn diagram of a mutually inconsistent pair of policies. The
behaviours covered by both policies are the ones that are both permitted and
forbidden.

The formula P(7) means that behaviour 7' is permitted
or possible; ~P(T') means that a behaviour T' is forbidden
or impossible. If neither P(7T") nor —P(T) can be derived
from a policy, then the permissibility of 7" is undecided. For
example, the policy {—P(Actionl, Action2)} would forbid
all behaviours beginning with Actionl followed by Action2.
More complex formulae and sentences can be built using
standard first-order logic constructs. A policy is a theory and
thus consists of a set of sentences.

With prefix-closed, we mean that for every behaviour 7" and
action e, P(Te) — P(T), with Te representing the behaviour
T extended with action e. If a policy forbids a behaviour, it
should also forbid any behaviours that extend this behaviour.
Similarly, if a policy allows a behaviour, it should also allow
its prefixes (see also Figure 1). Prefix-closedness implies that
certain types of theories will not be policies. For example,
for any behaviour 7, the theory {P(T'e),~P(T)} will not be
possible with a prefix-closed predicate P, and cannot serve as
a policy. Thus, a theory that allows an employee to enter a
room and then pick up a dongle, but forbids said employee to
enter said room, is not a policy.

We say that a policy is consistent if no contradictory
formulae can be derived from it.

Definition 4. A policy © is consistent iff there is no formula
¢ such that S+ ¢ and S F —¢.

A new policy can be formed from the union of a set of
policies, that is ©® = [JI_; ©;. When the new policy O’ is
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Policy 1
PERMITTED

A

Fig. 3. A Venn diagram of a mutually consistent pair of policies. The union
of the two policies is an exhaustive policy, as there is no behaviour that is
neither permitted nor forbidden.

_4

consistent, we say that ©;...0,, are mutually consistent.

Policies can be represented in Venn diagrams of the space of
behaviours, where for each behaviour 7' it is indicated whether
T is permitted, forbidden, or undecided. When representing
multiple policies in the same diagram, one can visualise pos-
sible contradictions. For mutually consistent sets of policies,
the space can be divided into permitted, not permitted, and
unspecified. A mutually inconsistent pair of policies is shown
in Figure 2.

Next to consistency, we can also speak of exhaustiveness
of policies, when there is no behaviour that is neither per-
mitted nor forbidden. Exhaustive policies cover all possible
behaviours, and requiring a policy to be exhaustive makes sure
that any possible behaviour will be considered (Figure 3).

Definition 5. A policy © is exhaustive iff for every behaviour
TeT,OFP(T) or©F -P(T).

Definition 6. An attack on policy ©1 enabled by policy O is
a sequence of actions that conforms to ©s, but violates ©.

Typically, © is an incorrect refinement of ©;. This refine-
ment may have been explicitly designed as such, or it may be
a policy implicitly defined by the technology and people in an
organisation.

To be able to speak about the notion that a policy is a correct
refinement of another policy, we need notions of soundness
and completeness. Intuitively, soundness means that a refined
policy does not break any requirements of the high-level
policy, and completeness means that a refined policy covers
everything that the high-level policy covers. These notions are
defined purely on the syntactic level here, and thus do not have
the usual interpretation in logic of soundness and completeness
of theories with respect to models.

Definition 7. A policy ©2 is complete with respect to a policy
O1 iff for each formula ¢ such that ©1 F ¢, also O3 F ¢.

2See also [26] for an earlier example of using Venn diagrams in security
assertions.



OLD VERSION

This basic logical framework gives rise to some simple
theorems, which we present here to provide a complete picture.

Theorem 1. If a policy ©s is complete with respect to a policy
©, that is inconsistent, then O is also inconsistent.

Proof: If ©1 is inconsistent, then according to Definition
4 there is a formula ¢ such that ©; - ¢ and ©; - —=¢. As O
is complete with respect to ©, this will mean according to
Definition 6 that also (1) O3 F ¢ and (2) O3 F —¢. Therefore
©5 is also inconsistent. [ |
We call a policy sound with respect to another policy, if
it does not violate the constraints of this other set (allows
a behaviour forbidden by the other, or forbids a behaviour
allowed by the other).

Definition 8. A policy ©2 is sound with respect to a policy
O1 iff the policy ©1 U Oy is consistent, i.e. if ©1 and O, are
mutually consistent.

When refining policies, soundness thus expresses that the
refinement does not go against the higher-level policy, whereas
completeness expresses that everything of the higher-level
policy is covered. Note that the soundness relation is symmet-
ric. This may seem counterintuitive, but as long as policies
are mutually consistent, they are sound refinements of each
other in the sense that they do not contradict each other’s
requirements (although they are usually not complete). This
signals something important. Although soundness seems to
be an important property to express when refining policies,
it is actually implied by the combination of consistency and
completeness. Intuitively, this can be understood by the idea
that if completeness holds for one policy with respect to
another, then the permitted/forbidden conditions on behaviours
must match for the behaviours that are covered by both
policies, and conflicts between the sets of policies can only
occur if at least one of the policies is inconsistent. This is
formalised in the following theorem.

Theorem 2. If a policy Oy is complete with respect to a
consistent policy ©1, and O is consistent itself, then Oq is
also sound with respect to ©1.

Proof: We prove the inverted statement: if a policy O3 is
not sound with respect to a consistent policy ©1, then either
O- is not complete with respect to ©1, or ©5 is inconsistent.
If a policy © is unsound with respect to a policy ©1, then
there exists ¢ such that ©; U O F ¢ and ©1 U O F —¢.
If ©5 is not inconsistent itself, then there must be a ) such
that ©1 F ), ©5 U ¥ is inconsistent, and ©5 ¥ 1. Thus, there
is a formula v that is derivable from ©; but not from ©s.
Therefore, ©4 is not complete with respect to ©;. [ ]

Definition 9. A policy O is a proper refinement of a policy
O1, if Os is consistent, and Os is complete with respect to
O1.

It follows that a proper refinement is also sound.

IV. TYPES OF POLICIES

In many cases, we do not need the full power of first-
order logic to express policies. This also means that we can

avoid problems of indecidability. The most limited policies are
conjunctions of permitted or forbidden behaviours.

Definition 10. A simple policy is a set of sentences © of the
form P(T) or =P (T).

A simple policy can be understood as assigning to each
behaviour a value (a) don’t care, (b) permitted, (c) forbidden,
or (d) contradiction.

Many policies allowing certain behaviour, however, require
that a certain result can be achieved, in relation to a business
goal. Often, it is not of essential importance how this result is
achieved. For example, there should be at least one possible
way to change the configuration of the e-mail server. This
means that security policies can forbid all but one of the
concerned behaviours, as long as this one behaviour remains
possible. We can thus have a situation where out of a set of
behaviours at least one should be possible.

Similarly, it would often be required that for an attack to be
prevented, at least one of the constituting atomic behaviours
(actions) should be disabled. Thus, a negative policy demand-
ing exactly this would require at least one behaviour in a set
of behaviours to be impossible. We call such “at least one”
policies extended policies.

Definition 11. An extended policy © is a set of sentences of
the form @1 V @2 V ...\ ¢y, where each of ¢; is of the form
P(T) or of the form ~P(T), with T a behaviour.

Note that extended policies are only “extended” with respect
to simple policies, not with respect to the general notion of
policy defined in Definition 3. Extended policies are a subset of
general policies, and simple policies are a subset of extended
policies.

These types of policies are thus included in the general
notion of policy, specified on traces. However, many real-life
policies are not stated in terms of complete behaviours. Often,
we see policies that are rather defined on:

1) the permissibility of actions given the preceding trace
(“only people with a key should be able to open this
room”), or

2) on the states of the system caused by the traces (“sales
data should not end up outside of the organisation”).

This gives rise to two different kinds of policy that are not
contained in the general notion. A local policy is a policy that
specifies when a particular action can take place, based on the
preceding sequence of actions. A state policy is a policy that
specifies which states should be or should not be reachable.

Definition 12. A local policy is a theory I in first-order logic,
with behaviours T € T and actions e € &£ being the terms
and L(_, _) a distinguished predicate over T x E.

—7

A local policy L(T,e) thus expresses that action e is
permitted following trace 7'.3

In order to specify policies on states, we need to augment
the sequences of actions with an underlying system state
representation, which we call a system model. Note that we
only introduce the state representation at this point in the

3In [25], this is referred to as action e being enabled for trace T'.



paper, and we still stick with our original interpretation of
policies in terms of behaviours. However, in practice policies
are often specified on states, and to allow a translation from
such policies to behaviours, we need to define their relation.

Definition 13. A system model M = (S, Sy, &, —) consists
of a state space S, an initial state Sy, a set of events £ and
a state transition function —: S x £ — S.

We write S; 5 S if there is a transition from state S;

. . T . .
to state S; upon action e. We write S; — S}, if there is
a behaviour T' = eg...e,, that leads from state S; to Si by
multiple transitions upon eg...e,, respectively.

Definition 14. A state policy is a theory X in first-order logic,
with states S € S being the terms and G(_) a distinguished
predicate over S.

In terms of our original definition of policy, a state policy
would permit one of the behaviours leading to the specified
state, or forbid all of the behaviours leading to the specified
state. It thus describes reachability of the state in the system
model.

Example 2. In the road apple example, there is a state
policy forbidding all states in which sales data is outside the
organisation. In terms of behaviours, the policy means that
such states should not be reachable. In the existing version
of the organisation, there are no local policies preventing
behaviours that lead to such states. The challenge here is to
define local policies that will do exactly this, for example, a
local policy forbidding the connection of non-company devices
to company computers (potentially enforced by physical dis-
abling). Even though this would not prevent the behaviour of
bringing devices to work (T'), it would not allow the action of
connecting them (e).

In the following sections, we will outline how the different
types of policies can be compared against each other.

V. CHECKING CONSISTENCY AND COMPLETENESS

As will be detailed in the related work (Section VIII),
formalisation of completeness of policies at different levels
is one of our major contributions. Below, we discuss how to
assess consistency and completeness for the different types
of policies we distinguished. Our interpretation of policies in
terms of behaviours is essential here, and enables a model-
checking approach to finding mistakes.

Completeness of simple policies can be verified by checking
if all permitted and forbidden behaviours of a high-level policy
are also permitted and forbidden in the low-level policy. Don’t
cares in the high-level policy may be assigned any value in
the low-level policy (although the value contradiction would
obviously make the low-level policy inconsistent, but not
incomplete). Thus, checking consistency and completeness for
simple policies is easy.

For extended policies, checking consistency requires the
construction of a simple policy matching the criteria imposed
by the extended policy. Verifying completeness of extended
policies requires checking whether for each sentence in the
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high-level policy, there is a corresponding sentence in the low-
level policy of which the disjunctive elements are a subset
of those of the sentence in the high-level policy. Thus, the
low-level policy should be more restrictive in terms of the set
of behaviours of which at least one should be permitted or
forbidden.

The most interesting case, however, is checking consistency
and completeness of local policies against state policies. Local
policies (usually delegated to agents within the system) enable
or disable single actions, depending on the credentials, and
thereby enable or disable particular traces on global system
level. A local policy can for example state that only persons
with a key can enter a door. To check these for consistency and
completeness against higher-level policies, possible sequences
of actions need to be generated from the local policies, in
order to obtain global policies that can be compared against
state policies, for example stating that sales data should not
leave the organisation.

Definition 15. An implied global policy of a local policy T is
a policy © such that for each behaviour T and action e:

) ©F P(e)

2) OF P(Te) iff O P(T) and T'+ L(T, e),

3) Ot =P(Te) iff ©F =P(T) or T+ —L(T\,e)

Note that the predicate P of the implied global policy
will be prefix-closed (if © F P(Te) then also © + P(T)).
Intuitively, part 1) of the definition states that, if an action is
locally permitted following trace 7', then either it should be
globally permitted following trace 7', or trace 1" should not be
permitted at all. Thus, either the situation in which the action is
allowed will not occur, or the action is enabled in that situation.
Part 2) states that if an action is locally forbidden following
trace 7', then it should be globally forbidden following trace
T. In the latter case, it does not matter whether 7" is globally
permitted or forbidden, as T'e should be globally forbidden in
both cases.

Moreover, state policies also imply policies on sequences
of actions, namely those that lead to the specified states.

Definition 16. An implied global policy of a state policy ¥ in
system model M = (S,S0,E,—) is a policy © such that for
each behaviour T':
1) if £+ G(S), then there exists a behaviour T such that
O©F P(T) and Sy = S
2) if X+ —=G(S), then for all behaviours T such that Sy KN
S, © F -P(T)

Note that the former clause can also be represented as an
extended policy (see Definition 11), where at least one of the
behaviours leading to the state should be permitted.

Example 3. For the road apple example, the implied global
policy of the state policy “Sales data should not leave the
organisation” prohibits all behaviours that lead to such states.
The local policy that forbids connection of external devices to
company computers implies a global policy that prohibits all
behaviours that contain such actions. In this local policy, there
is no constraint on the preceding trace, such as when a key is
required to open a door.
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To test completeness of local policies with respect to state
policies, the policies need to be translated to standard policies
in terms of behaviours. To do this, we need to determine
whether composite behaviours are permitted or forbidden
based on the regulation of individual actions by the low-level
policies. The local (low-level) policies are used to generate the
traces that they allow, and the states that are reachable. For
example, if a laptop is located in a room, and I cannot access
the room without the key, then the sequence of accessing
the room and removing the laptop is not permitted. However,
the sequence of asking someone the key, accessing the room,
and removing the laptop might be possible (permitted). If the
initial policies are only defined locally, this will not lead to
inconsistencies. Then the permitted and forbidden traces and
states are tested against the state (high-level) policies, which
may or may not prove completeness. The policies are complete
if all permitted states are reachable, and all forbidden states
are unreachable. If a violation of the state policy forbidding
certain states can occur, this corresponds to a behaviour that
satisfies the local policies, but violates the state policies,
proving incompleteness.

The question is which methods are most appropriate for
such an analysis. When all implied global policies would be
determined, consistency and completeness could be assessed
with standard logic tools. However, the explicit generation of
all behaviours that would be needed to specify the implied
global policies is very inefficient. Smarter solutions are there-
fore needed for specific cases. In the following, we present a
solution for the most typical case, i.e. comparing local policies
against state policies (only people with a key can open this
door vs. sales data should not end up outside the organisation).

As the translation will generate particular enabled traces,
notably ones that conflict with existing global policies, the
procedure is exactly the same as procedures that are used
for generating attack scenarios from system models with
local policies. The only difference here is that we make the
notions of global and local policies explicit, providing a sound
conceptual and formal framework for existing approaches to
attack generation. We thereby explain how existing methods
of analysis for finding attacks can be expressed in terms of
policy alignment).

VI. ATTACK GENERATION
A. Definitions

System models for attack generation can be understood
as completeness checkers for policies. They will compare
local decisions (local policies) against global requirements
(state policies). Typically, a system model underlying attack
generation methods is specified as a graph and the local
policies are assigned to nodes in the graph [12], [13], [14].
The edges, which represent access relations between entities,
then represent the system state. For example, an edge between
a person and a room would indicate that the person has access
to the room. In case the local policies assigned to the nodes are
dynamic, they are also part of the state. Such system models
thus allow the representation of both local policies assigned to
agents, as well as state policies on the state of the system as

a whole. Based on the model and the definitions above, they
can be translated to regular policies.

To enable a completeness analysis, the system infrastructure
is represented with the imposed (local) policies. As said, these
are usually formulated in terms of credentials, locations, and
identities required for an action e. Possession of the required
items can be derived from the preceding trace. For example, a
door connects two rooms (infrastructure), and a key is needed
to open the door (policy). Whether the agent will have the
key will depend on the preceding trace. The state of the
infrastructure can thus change over time, for example if agents
obtain keys. To connect the state policies and the local policies,
we specify system model states in terms of attributes [28],
i.e. edges representing access relations between nodes in the
graph. State policies can then refer to the attributes of the
states considered (e.g. sales data not being outside of the
organisation), and local policies can refer to the attributes as a
means to represent the preceding trace (e.g. a person being in
possession of a key). An action now consists of the satisfaction
of an attribute, or the addition of an edge to the graph.

The system’s local policies are represented as preconditions
of attributes in terms of other attributes. To enable the connec-
tion of different attributes in a trace/behaviour, the attributes
are annotated with the preconditions that can lead to the
attribute being satisfied. For example, the attribute representing
that I have access to a room has the preconditions that I have
access to the hall, and that I have access to the key.

Definition 17. An attribute a is a pair (name, precondition).
The precondition is specified as a conjunction of other at-
tributes. A state is expressed as a predicate S on attributes.
An action consists of the transition of the predicate value
of one attribute from 1 to T. If the precondition is T, the
attribute is satisfied in the initial state. The set of attributes
for a particular system is denoted A. We often write only the
name to refer to an attribute, omitting the precondition for
brevity.

The state representation thus consists of a representation
of whether attributes are satisfied (whether edges exist in the
graph). State policies can often be understood as predicates
on attributes: either (a) some attribute should be satisfiable
(being part of an essential business process), or (b) it should
be unsatisfiable (being a security threat). High-level policies
then state that either (a) at least one behaviour leading to
the satisfaction of the attribute should be permitted, or (b) all
behaviours leading to the satisfaction of the attribute should
not be permitted.

As in [28], it is assumed that satisfied attributes remain
satisfied forever. This is called the monotonicity assumption,
and it is a useful heuristic to prevent state explosion and
infinite loops. Only in cases where an agent has to go back
to a previous location, this assumption would not find the
“real” traces, and actions for going back would have to be
added by an additional procedure. Monotonicity leads to an
overapproximation, finding traces that cannot occur in practice,
when an agent is not able to go back. In such cases, the
procedure will conclude that certain traces are allowed by the
low-level policies, whereas they are actually not. If such a



trace is forbidden by the high-level policy, the procedure will
conclude that the low-level policies are not complete with
respect to the high-level policy. Conversely, when a certain
trace should be possible according to the high-level policies,
it may be found that the low-level policies are complete (they
seem to permit the behaviour), whereas they are actually not.
However, such cases are very rare in practice. They would be
relevant, though, when focusing on systems that attempt to
prevent an intruder from escaping with his catch. Here, we
are primarily interested in testing whether gaining access is
possible.

Attributes thus express properties of the world that may
become satisfied over time. In order to make attributes work-
able, they have to be generalised beyond individual objects.
For example, the attribute (Steve_in_room, Steve_in_hall and
key_in_hall) should be generalised to express (in_room(x),
in_hall(z) and in_hall(key)), with x a variable. This is then
an attribute femplate that covers many individual instances.

When expressed in logic, this can also be written as
Vo : in_hall(z) A in_hall(key) — in_room(z). In this
case, state transitions are replaced by derivation steps. We
can even generalise one level higher, and then obtain Vz :
in(x, hall) Ain(key, hall) — in(x, room).

If we have the “in” relation relating entities to groups of
entities as the only relation, we can represent the attributes by
a hypergraph, as in the ANKH system model [14]. Attributes
then represent which new group memberships are possible
based on which existing group memberships. The ANKH
model additionally constrains the policies by requiring that in
order for a new group membership to be possible based on an
existing group membership, there must exist an entity that is a
member of both groups already, and this entity must explicitly
allow the new membership based on specified preconditions.
In this way, different system models constrain the attributes
(and thus the associated preconditions) in different ways a
priori, typically based on some notion of proximity of entities
(actions cannot take place from a distance).

Attributes give rise to another type of policy, specifying
whether attributes are permitted or not:

Definition 18. An attribute policy is a theory @ in first-order
logic, with attributes a € A being the predicates.

Typically, state policies can be expressed more compactly
as attribute policies: if sales data should not leave the organ-
isation, we can prohibit all states in which the sales data is
outside, but we can write an equivalent attribute policy that
simply prohibits the attribute.

B. Method

With respect to the goal of describing attack generation
as policy completeness checking, we now know how state
representations with attributes in system models are related
to policies in our policy alignment framework: local policies
describe how attributes can change (which actions are pos-
sible), and attribute policies (state policies) describe which
attributes should or should not occur (which states are required
or forbidden).
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By understanding actions as satisfaction of attributes, we
can now define a procedure for testing completeness of local
policies against state policies with system models:

Algorithm 1. Attack generation / completeness checking
Input: System model with local policies, attribute policy
Output: Possible attacks on the attribute policy enabled by

the local policies

1) assume all attributes with precondition T to be satisfied;

2) check which attributes now have their precondition
satisfied, and mark these as satisfied;

3) repeat until no more attributes can be satisfied;

4) check if attribute policy violated by final set of satisfied
attributes;

5) if so, trace back the attribute to its original precon-
ditions, and output the possible attacks in terms of
sequential satisfaction of attributes.

When an attribute policy is input to the model that prohibits
certain attributes, the analysis will aim at finding a behaviour
that is allowed by the local policies, but still leads to satis-
faction of the particular attribute (i.e. violates completeness).
In this case, we can easily check the completeness of local
policies with respect to such a policy by the above procedure.
We only have to judge whether the corresponding attribute is
satisfied after execution of the method. If we wish to know
what behaviours can lead to the satisfaction of the attribute,
we can backtrack the analysis following the preconditions of
the attributes, up to the point where all remaining attributes
have precondition T.

By following such traces back from prohibited states to-
wards the initial state, one can build an attack tree [29],
[10], in which all the possibilities for violating the associated
state policy are visualised. In practice, because attributes can
occur in preconditions multiple times, the attack tree may not
actually be a tree in the mathematical sense, but rather a graph.
However, as the notion of attack graph has a different meaning
in security analysis, we call the resulting structures attack trees
anyway.

Example 4. The state policy in our running example (the
road apple attack) forbids all sequences of actions that result
in the sales data being outside of the organisation. This can
be expressed as an attribute policy:

& = {—in(salesdata, outside)} ()

which is equivalent to a state policy forbidding all states
where this attribute is satisfied:

Y={vSeS: @)
S(in(salesdata, outside)) = T — =G(S)}

which is again equivalent to a policy forbidding all be-
haviours leading to such states:

O={VI'eT,S5cS:
S(in(salesdata, outside)) = T A (S L S) (3)
5 ~P(T))
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Fig. 4. An attack tree for the road apple example (adapted from [14]). The
attack tree represents the possible behaviours that violate the policy “no sales
data outside organisation”. The grey boxes are attributes with precondition
T (initially satisfied attributes). Arrows point to attributes required by the
precondition of their originating attribute.

If all of the actions constituting one such behaviour are
possible (permitted by the local policies), they constitute an
attack on the high-level policy. Using graph-based system
model analysis, such attacks can be determined by Algorithm
1. In the road apple example, the road apple attack is enabled
by the local policies, and will therefore be output by the
algorithm. Depending on the other entities represented in the
model, other attack scenarios might be possible as well. The
high-level and low-level policies are thus not properly aligned.
To achieve alignment, at least one of the actions constituting
the road-apple attack should be disabled by a local policy.
Thereby also other attacks containing this action are disabled.
The analysis can be rerun with simulated countermeasures
to determine the overall effect of such measures on possible
attacks.

In Figure 4, the possible behaviours violating the high-level
policy are represented in an attack tree for the road apple
example [14].

Similarly, it may be checked whether it would be possible
to send aggregate sales data to the tax office. Even with
security policies in place, high-level policies may state that
there should still be a way to do this. In this case, the analysis
amounts to checking whether something is possible rather
than impossible. In this case, the high-level policy actually
states that at least one behaviour leading to the target situation

should be possible, i.e. it is an extended policy.

In case we wish to disable the road apple attack, at least one
of the constituting actions should be disabled, giving a negative
extended policy. When composing such policies (required to
disable attacks), the question whether the policies are still
consistent becomes relevant.

C. Scalability

We have run experiments with comparing local policies
against attribute policies using the Portunes system model [4].
This analysis is aimed at finding a violation of a state/attribute
policy that is permitted by the local policies. With standard
model checking tools, experimental results show a O(N®)
complexity. N represents the number of nodes in the model,
and we assume that the number of local policies is in the
same order. With dedicated algorithms, with theoretical worst-
case complexity of O(N*?), the experiments give O(3.3) and
O(1.7) for constructed examples with expected bad and good
scalability behaviour, respectively.

In these algorithms, the monotonicity assumption [28] sim-
plifies the calculations by requiring that edges (attributes)
can only be added to the graph of the system model, not
removed. This is adequate for most practical cases. Most
of the complexity lies in calculating all satisfiable attributes.
When this has been done, finding out which local policies are
responsible for the violation of a different state/attribute policy
is relatively cheap (O(N?)). For details, see [4].

VII. APPLICATIONS

In summary, the framework of policy alignment provides a
formal foundation for the analyses finding attack scenarios in
socio-technical systems. The present formalisation provides a
theoretical foundation in terms of:

« explicit definition of policies in terms of behaviours;

o description of high-level and low-level policies in terms
of permitted and forbidden behaviours, thereby explicat-
ing the link between high- and low-level policies;

o understanding of attack generation as generation of be-
haviours that violate the high-level policies (typically
state/attribute policies).

Based on the outline above, different applications of our
formalisation of policy alignment are possible, or will become
possible through further efforts.

A. Predicting attacks by misalignment analysis

As outlined above, the completeness analysis of local poli-
cies against global policies can be used for predicting possible
attacks in socio-technical systems. Although such methods
were proposed before, we are the first to formalise this idea in
terms of incompleteness of policies. Besides the basic analysis,
actually observed traces can be used to test whether the system
conforms to the policies (cf. [30]).



B. Attack trees as policies

Attack trees [29] are trees that show how an attacker can
reach a certain goal (root node). The tree splits when an
attacker has to execute multiple actions (AND node) or can
choose between actions (OR node) in order to achieve a goal.
Mauw and Oostdijk [10] provided a formal semantics for
attack trees. The semantics of an attack tree is a multiset of
actions, namely those that lead to the target situation of the
attack tree.

In our work on policy alignment, we are interested in
policies that separate between permitted/forbidden or possi-
ble/impossible behaviours. An attack tree can therefore also
be seen as a policy that allows exactly the behaviours of its
semantics. As a policy, it may be conflicting with a policy
that forbids such behaviours. In particular, higher-level policies
will typically prohibit behaviours that lead to a situation
represented as the goal of an attack. In this case, the behaviours
described by the attack tree will conflict with the higher-level
policy.

Conversely, and attack tree may also be seen as a policy
forbidding the behaviours that constitute the tree, i.e. all the
behaviours that achieve the goal of the attack. The attack tree
then becomes a specification of defensive measures needed
to prevent the attack. Such a policy will be the union of a
set of extended policies, namely for each behaviour reaching
the goal, at least one of the constituting actions should be
forbidden.

C. Representing multi-level authorisations

Normally, the formal study of authorisations is limited to
authorisations on one level: persons are mapped to roles,
and roles are mapped to access to objects (see [15]). Even
when refinement is discussed, as in [31], this refinement
only considers single actions and the associated authorisations.
However, in organisations one typically wants certain persons
or roles to achieve certain outcomes, but at the same time
one wants to prevent other results. Thus, when someone is
authorised to send aggregate sales data to shareholders, this
person should be permitted to execute all actions constituting
one of the possibilities to achieve this goal. In other words,
there is an alignment question here in terms of how to
define the low-level authorisations such that this high-level
authorisation is effectuated. Besides, one will often want this
to happen without giving low-level authorisations that can
lead to undesirable outcomes (insider attacks). This provides a
detailed account of how to implement least privilege by means
of policy alignment with multiple authorisation levels.

D. Quantification

Besides describing policies in terms of permitted and for-
bidden, it would be interesting to look at quantitative values.
These values would then represent the difficulty or cost
of a behaviour [32]. Policies could specify a maximum or
minimum difficulty for sets of behaviours, where minimum
difficulty would correspond to a security requirement (things
that should not happen should be difficult), and maximum
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difficulty would correspond to a usability requirement (things
that should happen should be easy). Fuzzy logic could be used
to support such policies.

Consistency and completeness will have different meanings
for quantified policies. Rather than binary values, they will
now also be quantitative values indicating “goodness” of poli-
cies. This will also require different definitions of consistency
and completeness.

These quantification efforts correspond to the labelling of
attack trees with different types of values (likelihood, effort,
cost, reward, etc.). However, they are now part of a model of
the socio-technical system infrastructure rather than of a pre-
defined attack tree. This means that attack trees will first have
to be generated from the system model in order to determine
the total difficulty of particular attacks. Heuristics may need
to be applied to keep the model checking manageable.

E. Policy design

Ultimately, the goal of this work is to allow system design-
ers to specify low-level policies based on high-level policies
defined on the management level organisations. A full-fledged
method for achieving this goal will require further research in
the areas outlined above.

VIII. RELATED WORK
A. Policy alignment

Abrams and Bailey [21] discuss the refinement of security
policies across different levels of abstraction, where lower-
level policies are implementations of higher-level policies.
They discuss consistency and conformance of policies between
levels. They do not formalise these relations, and neither
do they discuss the possibility that not all behaviours will
be categorised as permitted or forbidden at higher levels of
abstraction. Nunes Leal Franqueira and Van Eck [33] dis-
cuss alignment of policies between different domains (access
control, network layout, and physical infrastructure) based on
the formalism of Law Governed Interactions. They only focus
on expressing policies from the different domains in a single
language, not on refinement and completeness of policies.

B. Security logics

Cholvy, Cuppens and others [6], [7] focus on consistency
of security policies and the merging of policies based on
deontic security logics, using an operator for obligation (where
forbidding is expressed as obligation not to do something,
and permission is expressed as not being obliged not to do
something). They focus on logical access, and discuss whether
it is possible for situations to occur in which there is a conflict.
For example, if a user cannot downgrade a file, but a system
security officer (SSO) can, and it is at the same time specified
that a SSO is also a user, then if there exist an agent with the
role of SSO, and a file, then the SSO is both permitted and
forbidden to downgrade the file.

We are also interested in conflict situations, but (1) we
focus on socio-technical systems, including physical access
and organisational policies, and (2) we relate our work to
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model checking instead of theorem proving. In addition, we do
not discuss obligatory actions, as we are primarily interested
in the possibility or impossibility of attacks through permitted
and forbidden actions. We thus do not need to use deontic
logic, as we only consider whether actions are permitted or
forbidden at a specific level of abstraction. At a high level,
this has a normative meaning (“sales data should not (cannot)
leave the organisation™); at a low level, this has a descriptive
meaning (“this door can only be opened with the key”). This
difference does not impact the analysis, as we only focus on
the alignment of the policies between the different levels of
abstraction.

C. Security policy refinement

Several papers discuss policy refinement for specific scenar-
ios. For example, Craven et al. [31] discuss policy refinement
in a database setting, and Laborde, Barrére and Benzekri focus
on policy refinement in networks [34]. Bonatti, De Capitani
di Vimercati and Samarati [5] focus on the composition of
multiple policies, where policies may be underspecified. These
approaches achieve major improvements in the flexibility of
reasoning on security policies, by providing representations of
policies at different levels of abstraction that are specific to the
context considered. Here, however, we are interested in multi-
step scenarios in socio-technical systems, and because of the
complexity and the many different types of actors involved,
we need a more general formalisation. In particular, previous
work discusses policies that are already formulated in terms
of subjects, objects, and individual actions, but refines these
following refinement of the subjects, objects and actions. For
policy alignment and refinement to work in socio-technical
system scenarios, we are interested in how to refine policies
that can be expressed in terms of more complex behaviours
(i.e. sequences of actions).

D. Consistency and completeness

Checking consistency of security policies has been dis-
cussed in the literature from an intensional / theorem proving
point of view [6], [7]. From a model-checking point of view,
consistency of policies depends on the space of behaviours.
Therefore, the possible behaviours first need to be generated to
determine whether the policies imposed on the behaviours are
consistent. In practice, such conflicts could for example occur
when particular policies apply in emergency situations, such
as doors that are automatically unlocked, whereas security
policies would require the doors to be closed (i.e. allow no
behaviours that involve opening the doors).

Checking completeness of security policies is less well
studied, because the notion of policies at different levels of ab-
straction has not been taken into account. Where completeness
is mentioned, e.g. in [15], [27], it refers to what we have called
exhaustiveness. Formally discussing completeness of policies
at different levels is therefore a major contribution.

E. System models

System models [12], [13], [14] are representations of an
organisation’s technical and social infrastructure, aimed at

11

finding security vulnerabilities in the infrastructure. Attacks (or
attack trees) can be automatically generated from such models.
The models check a high-level policy (e.g. “Sales data should
not leave the organisation”) against low-level policies (e.g.
“This door can only be opened with a special key”). Intuitively,
this can be understood as a form of policy alignment, and one
of our important contributions is a more precise definition of
this relation.

As we are interested in possible policy violations, or
(in)completeness of refined policies with respect to high-level
ones, we focus on an extensional interpretation of policies
here, i.e. in terms of the set of behaviours that they permit or
forbid. The extensional interpretation also makes it possible to
visualise the policies in Venn diagrams, by showing policies in
terms of permitted and forbidden subsets of behaviours. It also
enables model checking for consistency and completeness, by
systematically exploring the space of behaviours.

IX. CONCLUSIONS

In this paper, we formalised the notion of security policy
alignment. Policy alignment has been known as an approach
for assessment of organisational security policies, but a formal
foundation was lacking. This meant that the areas of (informal)
policy alignment, security logics, and system models remained
implicit. Our formalisation provides a formal foundation for
model-checking approaches to finding security weaknesses in
complex socio-technical systems, based on the up to now
informal notion of security policy alignment.

Our formalisation of security policies is based on theories
in first-order logic, with a permission predicate on behaviours.
Security policies can then be checked for consistency and
completeness. We showed that soundness can be expressed as a
combination of these. Completeness of local policies delegated
to agents can be checked with system models, by comparing
the traces that they allow against global policies stated in terms
of states or attributes. This provides a clear foundation for
the relation between system models and security policies. To
allow other than black-or-white policies, which is typical when
policies are delegated to humans, we sketched possibilities to
transform the definitions and checks to a quantitative setting.

The model could further be extended with policies repre-
senting obligation (cf. [9]). This is especially relevant for local
policies, as these denote which next actions are permitted
given the preceding trace (expressed in the attributes of the
state). Based on the preceding trace, it could also be specified
that a particular action is compulsory. In the behaviour, such
an action should then always be executed first, before any
other actions can take place. This would then in turn imply a
global policy, by preventing certain behaviours (namely those
that do have different actions before the compulsory one).
However, such an analysis is not completely trivial within the
proposed framework, especially in relation to the monotonicity
assumption that is introduced to keep the analysis scalable. If
attributes can only be added, but not removed, there would
not be any reason to execute actions in a particular order,
as the preconditions will never become false again after they
were true once. For obligation to be meaningful, the obligatory



action would have to disable others (such as when locking
a door), and therefore requires lifting of the monotonicity
assumption. Whether this keeps the analysis scalable remains
to be seen. Still, we have shown that for many security
problems, focusing only on what is possible or permitted
already provides valuable results.

Another topic for future work is the integration of the
present formalism of policy alignment with our previous work
on system refinement [23]. It would then become possible to
analyse whether an attack that would be possible/impossible
in a system would still be possible/impossible in a refinement
of that system.

We also hope to further develop quantitative models for
security analysis, based on the present formalisation. Such
models would be able to assist companies in estimating the
likelihood, difficulty, and damage of attacks, as well as the
effectiveness of countermeasures in reducing the values of
these variables.
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