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PrattIn the simplest and the most abstract form, the idea is to view an in�niteobject x as a stream, i.e. an in�nite list [x0; x1; x2 : : : ] of elements from someset �. Construed as a rudimentary process, this stream reduces to an action,and a resumption, i.e. the \head"h(x)=x0and the \tail", another streamt(x)= x0 = [x1; x2; x3 : : : ]But the pair< h; t > : �! ! �� �!is, of course, the �nal coalgebra structure for the functor �� (�) : Set! Set.Although this simple picture, and the related coalgebraic ideas, are nowa-days probably not far from becoming a standard part of the basic toolkit fordesigning datatypes, and perhaps even systems in general [8,18], it may nev-ertheless come as a surprise that the idea to implement real numbers alongthese lines can be dated as far back as 1971 | and to the writings of the�rst \hackers", of all places! In the famous Hakmem report, R.W. Gosperand R. Schroeppel took up analyzing (among some 200 other computationalthemes) real arithmetic in terms of continued fractions. The main result ap-pears to be Gosper's derivation [6, 101B] of a general algorithmic scheme forimplementing arithmetic operations and methods of successive approximation.He begins as follows:Let x be a continued fractionp0 + q0p1 + q1p2 + � � �= p0 + q0x0where x0 is again a continued fraction and the p's and q's are integers.[ : : : ]Instead of a list of p's and q's, let x be a computer subroutine whichproduces its next p and q each time it is called. Thus on its �rst usage, xwill \output" p0 and q0 and, in e�ect, change itself into x0.Real numbers are thus presented as streams of pairs of integers. The men-tioned coalgebraic structure, although never spelled out, is then employed inthe subsequent constructions, as well as in the discussion touching upon someof the still very active themes, such as guarded induction [14,15], or the roleof redundancy in representation.It may seem ironic that what we now consider to be a very general com-putational method had an early brief appearance, even on the background,among the primordial \hacks". But this is probably just an instance of theirony of language.In any case, although Hakmem was never published, it has remained avail-able throughout the intervening years, it was widely read, and sometimes evencited. But while the algorithms derived in it have been acknowledged as the2



Prattsource of inspiration for some of the most interesting modern approaches toexact real arithmetic [5,10,20], the underlying coalgebraic idea seems to havegone unnoticed.While hoping to point to this conceptual link, we must add that the con-structions on the following pages should not be taken as a rational recon-struction of the Hakmem view of reals. In fact, they were obtained while wewere trying to work out an e�ective underpinning for our wider calculus-by-coinduction e�ort, initiated in [14,16]. The coalgebras presented here are justone detail in that plan. However, the realization that a concrete coalgebra ofreals was never worked out, although its e�ects were in use for quite a while,made us try to present it here.2 Lists and streamsDe�nition 2.1 Let � be a set. A �-stream algebra is a set A together withan isomorphism A <h;t>�= ,, � �AckkIn other words,h(a :: x)= at(a :: x)=xh(x) :: t(x)=xwhere a :: � is the in�x notation for c(a; x).De�nition 2.2 A �-list algebra is a set B with a distinguished element [],and an isomorphism B� <h;t>�= ,, � �Bckkwhere B = f[]g+B�.A list algebra structure on B thus corresponds to an isomorphism B �= 1 +� �BExamples. The basic example of a list algebra is, of course, the set �� oflists from �: the operations are clearly h = head, t = tail and c = cons. Thedistinguished element [] is the empty list.The basic example of a stream algebra is the set �! of streams, or in�nitelists from �. The set �1 of lists and streams together, i.e. of �nite and in�nitelists, is again a list algebra.The set A of analytic functions (say) at 0 also forms a stream algebra, withthe structure 3



Pratth(f) = f(0)t(f) = f 0a :: f(x) = a+ R x0 f(t) dtThe Taylor expansion induces an isomorphism of A with the subalgebra of R!,consisting of the streams of Taylor coe�cients. A method for implementingparts of basic di�erential calculus in terms of stream algebra has been outlinedin [16].Coalgebras. List and stream algebras are usually derived from initial alge-bras and �nal coalgebras.By de�nition, given a functor F : C ! C, an F -coalgebra is simply anarrow A a! FA. A coalgebra homomorphism from A a! FA to B b! FB isan arrow g : A! B such that Fg � a = b � g.As mentioned in the introduction,�! <h;t>���! � ��!is the �nal coalgebra for the functor � � (�) : Set! Set. Its �nality meansthat every coalgebraX <k;s>�! ��X induces a unique coalgebra homomorphism[(k; s)]. X[(k;s)] �������� <k;s> // ��X��[(k;s)]���������! <h;t> // �� �!The image of x 2 X is the stream [(k; s)](x) = [x0; x1; : : : ], where xi = ksi(x).Dually, an algebra for F : C ! C is an arrow FA a! A. The algebrahomomorphisms and the notion of initiality can be obtained by reversing thearrows of the corresponding coalgebra statements. An initial algebra for thefunctor 1 + �� (�) : Set! Set is1 + � ��� [[];cons]����! ��;induced by the list algebra structure. The �nal coalgebra for the same functoris the set �1 of �nite and in�nite lists, with the structure map derived fromlist algebra again.By the Lambek lemma [11], the structure map of every initial algebra,and every �nal coalgebra, must be an isomorphism. Therefore, the initialalgebras and the �nal coalgebras for the functor 1 + � � (�) : Set ! Setalways satisfy the list algebra equations. The initial algebra for the functor�� (�) : Set! Set is empty, but the �nal coalgebras yield stream algebras. 11 One might ask why we are calling them algebras, rather than coalgebras then. Someoneelse might reply that they can be made into an algebraic theory; on the other hand, it needsto be mentioned that algebras for an algebraic theory are not the same thing as algebras4



PrattReals as streams. The goal of the present paper is to derive real numbers aslist and stream algebras. There are in�nitely many irredundant presentationsof reals as lists or streams of positive integers, some of them convenient for onepurpose, some for another. We spell out three crucial examples, and explaintheir relations. This should su�ce for extracting other examples, although nosurprises are to be expected there.All the obtained representations of reals turn out to be based on �nal coal-gebras for the functors N � (�) : Set ! Set and 1 + N � (�) : Set ! Setrespectively, where N is the set of natural numbers. The �nality of the coal-gebras of reals accounts for their coinductive nature, just like the initiality ofthe algebra 1 + N [z;s]�! N of natural numbers is well known to account for theinduction on them. The presented constructions can thus be viewed as a fur-ther piece of evidence for the idea that the coinduction plays in mathematicalanalysis a role similar to that of the induction in arithmetic.3 Coalgebras on [0; 1)While analytic functions decompose by the Taylor expansion into streams ofreal numbers, real numbers will be analysed as streams of natural numbers. 2It is of course a matter of taste \which" set of natural number to use in thefollowing presentation. The more complicated among our examples appear abit simpler with N = f1; 2; 3; : : : g.3.1 Monotone dyadicsThe simplest stream algebra, say, on the interval [0; 1), can be derived directlyfrom the usual binary notation. It is well-known that disallowing the in�nitetails of 1 makes this notation irredundant: each element a 2 [0; 1) can bewritten in exactly one way, e.g. a = 0:011101001111000 : : : . We assume thatthese streams are always in�nite, padded with zeros if necessary.By partitioning the stream by the occurrences of 0s, and recording thelength of the substrings 1 � � � 110, each legal binary stream induces a uniqueN-stream, and vice versa. For example 011101001111000 : : : corresponds to[1; 4; 2; 1; 5; 1; 1; : : : ], by0|{z}1 1110|{z}4 10|{z}2 0|{z}1 11110| {z }5 0|{z}1 0|{z}1 : : :Of course, one could start N from 0 as well, and not count the 0 into thelength of 1 � � � 110, as to get [0; 3; 1; 0; 4; 0; 0; : : : ] instead, the choice made forsection 5. Here it is natural to read the 0's as commas and the blocks of 1'sfor a functor. Trying to avoid overloading algebra seems hopeless.2 As an initial algebra for the functor 1 + (�) : Set! Set, natural numbers can, of course,be viewed as �nite lists of a single symbol. This is their unary notation.5



Prattas tally notation. The above choice, no zeros, is made with an eye on laterexamples in sections 3 and 4.This idea, which can be found in Hausdor� [7, x10], yields stream algebraon [0; 1)h(x)=�n: 1 � 12n > x (= 1 � dlog(1� x)e)t(x)= 2� 2h(x)(1 � x) (1)n :: x= 12 + � � � + 12n�1 + x2n �= 1� 2� x2n �where �n: �(n) denotes the least n satisfying �. The head hm(x) is thus thelength of the string 1 � � � 110 leading the binary presentation of x. The tailt(x) is the real number corresponding to the binary stream obtained when thisstring is deleted.The induced coalgebra [0; 1) <h;t>�! N � [0; 1) is �nal, i.e. isomorphic withthe familiar coalgebra N! of streams. The isomorphism [0; 1) �= N! can beunderstood as follows.In order to get a stream [a0; a1; a2; : : : ] corresponding to a number a 2[0; 1),� keep adding 12 + 122 + 123 : : : until adding for the �rst time 12n overshoots a;set a0 = n;� to the sum 12+� � �+ 12n�1 (which is thus� a) further add 12n+1+ 12n+2+ 12n+3+: : :until adding 12m overshoots a; set a1 = m� n; and so on.In terms of the described stream algebra structure, ai, of course, is just hti(a).The other way around, the isomorphismwill assign to a stream [a0; a1; : : : ] 2N! the numbera= 1Xi=0 �12�ai�1 ai�1Xk=1 �12�k (2)where a�1 = 0 and ai =Pik=0 ak. For instance, [1; 4; 2; 1; : : : ] will thus go to1z}|{12 � 4z }| {12 + 14 + 18 + 116 � 2z }| {12 + 14 � : : :���= 122 + 123 + 124 + 126 + 127� : : :�i.e. to the binary number 0:0111010 : : : .3.2 Alternating dyadicsA slightly di�erent procedure of approximating a 2 [0; 1) is to� keep adding 12+ 122 + 123 : : : and stop only after the sum reaches or overshootsa; but stop immediately after this, so that the di�erence between the sumand a remains less than the last summand added, say 12n . Set a0 = n6



Pratt� Since the tail 12n+1 + 12n+2 + 12n+3 : : : adds up to 12n , subtracting its elementsone by one from the previous sum, must eventually, say after subtractingm elements of this tail, lead below a. Set a1 = m.� Then start adding again the further elements of the tail, until we get abovea, and so on.This is the alternating binary approximation. The structure induced on [0; 1)is h(x)=�n: 1 � 12n � x (= �blog(1� x)c)t(x)= 2h(x)(1 � x)� 1 (3)n :: x= 12 + � � � + 12n�1 + 1� x2n �= 1� 1 + x2n �Note however that h(0) = 0 falls out of N. But without 0 on the left handside, the above structure yields an isomorphism (0; 1) '! N � [0; 1). In fact,here we have a list algebra [0; 1) <h;t>�! 1 + N � [0; 1), where h and t can beviewed as unde�ned on 0, or assumed to send it to 1 = f< 0; 0 >g.In any case, [0; 1) still appears a �nal coalgebra, albeit for a di�erentfunctor. It is isomorphic with the \canonical" �nal coalgebraN1 <head;tail>������! 1 + N � N1consisting of the �nite and in�nite lists. The element of 1 plays the role of thehead and the tail of the empty list.The isomorphism [0; 1) �= N1 takes a 2 [0; 1) to the list [a0; a1; : : : ], whereai = hti(a). This list terminates after n entries if tn(a) = 0, so that htn(a)falls out of N.The other way around, given a list [a0; a1; : : : ], the corresponding numberwill bea= 1Xi=0 (�1)i2ai�1 aiXk=1 �12�k (4)again with a�1 = 0 and ai = Pii=0 xi. This time, the stream [1; 4; 2; : : : ] willcorrespond to12 � 12 �12 + 14 + 18 + 116�+ 132 �12 + 14� : : := 12|{z}1 � 122 � 123 � 124 � 125| {z }4 + 126 + 127| {z }2 : : :The real interval [0; 1) is thus identi�ed not only with the streams of pos-itive integers, but also, in a di�erent way, with their lists.7



Pratt3.3 Continued fractionsA regular continued fraction 3 expansion of a 2 [0; 1) is in the forma= 1a0 + 1a1 + 1a2 + � � �with a0=�1a�ai+1=$ 11ai�1 � ai%Here bxc denotes the greatest integer below x, and a�1 = a. This yieldsanother bijection from the real interval [0; 1) to the lists of positive integersN1, �nite or in�nite, with the empty list corresponding to 0.Such bijections correspond to the list algebra structures on [0; 1). Writingbxc in terms of �n, the above expansions yieldh(x)=�n: 1n+ 1 < xt(x)= 1x � h(x) (5)n :: x= 1n+ xThe list [a0; a1; a2; : : : ], corresponding to a given a 2 [0; 1) can, of course, becomputed as [h(a); ht(a); ht2(a); : : : ], but the following procedure, essentiallyfrom [6], shows better what is going on:� test 12 ; 13; 14 ; : : : until 1n+1 falls below a, then set a0 = n; p0q0 = 1a0 is the �rstconvergent of a;� then go up: 1a0+1 ; 22a0+1 ; 33a0+1 , until (m+1)p0(m+1)q0+1 comes above a; set a1 = m; thesecond convergent of a is p1q1 = a1a1a0+1 (which is always a reduced fraction);� down again: p0+p1q0+q1 ; p0+2p1q0+2q1 ; : : : , until p0+(`+1)p1q0+(`+1)q1 < a; set a2 = `, and p2q2 =p0+a2p1q0+a2q1 ;� then up again, always adding pi�1+piqi�1+qi ; pi�1+2piqi�1+2qi ; : : : , until the next convergentpi+1qi+1 = pi�1+ai+1piqi�1+ai+1qi is reached : : :The convergents thus alternate, with p2iq2i � a and p2i+1q2i+1 � a. Approximating acan be understood as �nding the convergent p2i+2q2i+2 yet closer to a, in the formp2i+a2i+2p2i+1q2i+a2i+2q2i+1 , thus belonging to the interval �p2i+1q2i+1 ; p2iq2i i. The number a is now3 General continued fractions allow more general numerators.8



Prattin �p2i+1q2i+1 ; p2i+2q2i+2 i, and the next convergent p2i+3q2i+3 is sought there.Reversing this process, the number a 2 [0; 1) corresponding to a given list[a0; a1; : : : ] along the isomorphism [0; 1) �= N1 is obtained asa= limi!1 piqiwhere p�1 = 0 q�1 = 1p0 = 1 q0 = a0pi+1 = pi�1 + ai+1pi qi+1 = qi�1 + ai+1qi3.4 ComparisonsEach of the described structures is based on a suitable decomposition of theinterval [0; 1) on countably many subintervals homeomorphic to it, which arethen mapped by < h; t > to its countably many copies in N � [0; 1). In thealternating dyadic coalgebra, this mapping is arranged as follows:[0;1) = f0g + (0;1=2] + (1=2;3=4] + (3=4;7=8] +:::??y # # # #1+N�[0;1) = f<0;0>g + f1g�[0;1) + f2g�[0;1) + f3g�[0;1) +::: (6)The monotone dyadic coalgebra di�ers only by the fact that the subintervalsare in the form [0; 1=2); [1=2; 3=4) and so on, so that 1 is not needed.But the continued fraction coalgebra looks di�erent:[0;1) = f0g +���+ [ 1n+1 ; 1n) +���+ [1=3;1=2) + [1=2;1)??y # # # #1+N�[0;1) = f1g +���+ fng�[0;1) +���+ f2g�[0;1) + f1g�[0;1) (7)The transformation on [0; 1), induced as the isomorphism of these two �nalcoalgebra structures is continuous, but rather cumbersome to describe. Itmaps (0; 1=2] to [1=2; 1), (1=2; 3=4] to [1=3; 1=2) and so on.It is not hard to see that any decomposition of [0; 1) into countably manysubintervals homeomorphic to it will induce a list or stream algebra, isomor-phic to either N1 or N!. However, while \invisible" for coalgebra homomor-phisms, the choice of the decomposition determines what is easy and whathard to do with each such representation.Exploiting this di�erence is one of main tricks of coinductive programming[14,15]. E.g., while isomorphic as coalgebras, analytic and coanalytic func-tions [16] bear signi�cant computational di�erences: the Laplace transformmaps di�erential equations over analytic functions into algebraic equations9



Prattover coanalytic functions; the inverse Laplace transform maps back the solu-tions of the latter into the solutions of the former. So isomorphisms do makea di�erence!For instance, the alternating dyadics yield the best dyadic approximationof a 2 [0; 1). If an n-th partial sum �n of (4) has the reduced form p2q , thenja� �nj � ja� r2q jholds for all integers r. Indeed, by the construction of �n, q is an and ja��nj <12q . On the other hand, it is well-known, and fairly clear from the describedconstruction, that continuous fractions yield the best rational approximation,i.e. ja� pnqn j � ja� rqn jholds for any convergent pnqn of a, and any integer r.4 Coalgebras on [0;1)Transferred along the homeomorphism[0; 1) ! [0;1)x 7�! x1� xy1 + y  �[ ythe described coalgebras on [0; 1) can be given explicitly as follows.We have �rst the monotone dyadics,h(y)=�n: 2n � 1 > y (= 1 + blog(1 + y)c)t(y)= 1 + y2h(y) � (1 + y) � 1 (8)n :: y=2n 1 + y2 + y � 1the alternating dyadics,h(y)=�n: 2n � 1 � y (= dlog(1 + y)e)t(y)= 12 � 2h(y)�11 + y � 2h(y)�1 � 1� (9)n :: y=2n 1 + y1 + 2y � 1and the continued fractions, 10



Pratth(y)=�n: 1n < y �= 1 + �1y��t(y)= yyh(y)� 1 � 1 (10)n :: y= 1 + yn(1 + y)� 1 :5 Continuum as Coalgebra, FormalizedWe now formalize the above intuitions categorically. We start by �xing theambient category to be Pos, posets. We know of no analogous technique thatworks in Set short of externally imposing the desired order and/or topologyon the coinductively de�ned sets. In Pos we can obtain the desired structurewithout such deus ex machina intervention.The signi�cance of our de�nition of the reals is that it exposes the followingappealing parallel between the continuum and the natural numbers. Whereasthe ordinal ! has a natural presentation as the initial algebra of the functor1;X (converse ordinal sum with 1, i.e. prepend unity to the given poset), theordered continuum has just as natural a presentation as the �nal coalgebraof X � ! (ordinal product with !, i.e. arrange ! copies of the given poset inorder).To pass fromR qua poset to R qua topological space, observe that the ordertype of any chain uniquely determines its topology when the latter is taken tobe the order interval topology, 4 as is the usual case for the continuum. Henceour de�nition characterizes the continuum not only up to order isomorphismbut as a corollary up to homeomorphism.5.1 Ordinal Sum and ProductIn the category Pos of posets, concatenation or ordinal sum X;Y is de�nableas cardinal sum (coproduct or juxtaposition) X+Y with its order augmentedwith x � y for all x 2 X; y 2 Y . Similarly, lexicographic or ordinal productX � Y is de�nable as ordinary or cardinal product X � Y with its order aug-mented with (x; y) � (x0; y0) for all x; x0 inX and all y < y0 in Y (so Y suppliesthe \high order digit"). Equivalently, X � Y is the result of substituting onecopy of X for each element of Y , with the resulting order being that of Xwithin each copy, and that of Y between copies.Both operations are associative, not commutative, and preserve the pose-tal extremes of each of linearity (chainhood) and discreteness (sethood), aspointed out by Birkho� [3,4], the inventor of the posetal uni�cation of cardi-nal and ordinal arithmetic.4 The order interval topology on a chain (more generally any lattice) has for its open setsarbitrary unions of open intervals of the chain [19, x5.15].11



PrattBirkho�'s colleague Mac Lane at Harvard invented functors too late forany impact on Birkho�'s invention. The sum (coproduct) functor on Set isre
ected into Pos to de�ne the extension of X;Y from objects to morphisms,readily seen to be a functor. One might suppose the same to be true of ordinalproduct, but functoriality fails for the second argument as may be illustratedwith the quotient f : 2 ! 1 of the two-element chain 2 = f0 < 1g to thesingleton poset f0g. Consider the morphism 12 � f : (2 � 2)! (2 � 1). Viewing2 �2 as 00 < 10 < 01 < 11 and 2 �1 as 00 < 10, 2 �f must take 00 and 01 to 00,and 10 and 11 to 10. But then (2 �f)(01) < (2 �f)(10), violating monotonicity.Ordinal product is however functorial in its �rst argument. To see this,let X vary while holding Y �xed. It su�ces to show that for any monotonefunction f : X ! X 0 (the agent of variation), the function f �1Y : X�Y ! X 0�Ygiven by (f �1Y )(x; y) = (f(x); y) is monotone. That is, if (x; y) � (x0; y0) then(f(x); y) � (f(x0); y0). But when y 6= y0 the order depends only on y and y0,while when y = y0 it depends only on x and x0, satisfying monotonicity ineither case.5.2 First FunctorDe�ne F1 : Pos! Pos as F1(X) = X � !:Theorem 5.1 The �nal coalgebra of F1 is order isomorphic to the unit realinterval [0; 1) (equivalently the nonnegative reals R+) standardly ordered.Proof. Since Pos has all limits including the empty limit 1, we may constructthe �nal coalgebra of F1 as the limit of : : :! F1(F1(1))! F1(1)! 1, wherethe map from F i+1(1) to F i(1) is F i(!) and ! : F (1) ! 1 is the unique mapto 1. Since limits in Pos are computed as for Set on the elements (unlike thecase of colimits, coequalizers being the troublemaker) it follows that the �nalcoalgebra of F1 has as underlying set !!, i.e. streams of natural numbers.The induced order on !! can then be veri�ed to be lexicographic, giving themonotone dyadics of section 3, the �rst representation we treated, which wesaw there to be order isomorphic to the reals. 2Corollary 5.2 !! with the order interval topology induced from its lexico-graphic ordering is homeomorphic to [0; 1) with its usual topology, since thelatter is also the order interval topology.5.3 Second FunctorDe�ne F2 : Pos! Pos as F2(X) = 1; (Xo � !):HereXo denotes the order dual of poset X while 1 denotes the singleton poset.The constituent operations of the de�nition all being functors, so is F2. (Note12



Prattthat Xo as a functor does not reverse morphisms, only objects.) Since Pos iscomplete, F2 has a �nal coalgebra.Theorem 5.3 The �nal coalgebra of F2 is order isomorphic to [0; 1).Proof. As for F1 we start from the corresponding �nal coalgebra for Set.The only relevant di�erence is 1;, which in Set becomes 1+, for which the�nal coalgebra augments the set !! of streams with the set !� of lists.Passing now to Pos, the e�ect of Xo is to alternate the lexicographic order:the zeroth, second, fourth, : : : numbers in the stream are ordered standardlywhile those in the odd positions are reverse ordered. (Interchanging evenand odd here is immaterial, yielding an isomorphic �nal coalgebra.) Thisordering corresponds to the alternating dyadics, the second representation ofthe continuum treated in section 3. 2Other compositions of familiar functors on Pos suggest themselves. Their�nal coalgebras will necessarily exist, Pos being complete as noted above, butthey need not be order-isomorphic to the continuum. Two obvious functorsintermediate between F1(X) and F2(X) are ! � Xo and 1 + ! � X. Up tohomeomorphism, the �nal coalgebra of the former is R� Q, the irrationals,or Baire space. That of the latter is R+Q+ f�1g, the rationals duplicated(as an ordered pair with nothing in between), or Cantor space. 56 Future workAs explained already by Brouwer, canonical representatives make algebraicoperations on reals undecidable. The problem is circumvented by redundantrepresentations. Indeed, we originally obtained the alternating dyadics asa retract of a coalgebra with redundant representations of reals, developedfollowing Conway's game theoretic constructions. Conway's description of the�eld structure readily lifts to this coalgebra. It seems likely that the structurecan then be transferred to alternating dyadics along the retraction, but thishas not yet been worked out in detail. The structure could then also betransferred to continued fractions along the isomorphism described in section3.4. We are hoping to return to this theme in a forthcoming paper.While not suitable for direct algebraic operations, the irredundant coalge-bras described here will probably have a role in providing quick output, e.g. inparticular applications of Newton or Runge-Kutta method. This follows from5 To see the correspondence between the recursive middle-third construction of Cantorspace and the duplicate-rationals construction, also obtained as the order �lters of Q in thecourse of Dedekind's construction, follow the removal of (13 ; 23) by stretching the lower third[0; 13 ] to [0; 12 ] and dually for the upper third, thereby restoring everything while duplicating12 . The recursion similarly duplicates the remaining dyadic rationals, a dense set in [0; 1)and therefore su�cient for the claim. This argument points up the importance of de�ningthe middle third to be open: taking it to be closed would instead produce Baire space, whiletaking it to be half-open would simply reproduce the continuum!13
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