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Abstract

We define the continuum up to order isomorphism (and hence homeomorphism)
as the final coalgebra of the functor X - w, ordinal product with w. This makes an
attractive analogy with the definition of the ordinal w itself as the initial algebra
of the functor 1; X, prepend unity, with both definitions made in the category of
posets. The variants 1; (X - w), X°-w, and 1; (X° - w) yield respectively Cantor
space (surplus rationals), Baire space (no rationals), and again the continuum as
their final coalgebras.

1 Introduction

Coinduction has only relatively recently been recognized as a genuine logical
principle [2]. Before that, it was introduced and used mostly in the semantics
of concurrency [13]. It has by now been presented from many different angles:
[1,8,12,16-18], to name just a few contributors.

Why would so foundational a principle wait for the late 20th century to be
discovered? In [14,16] the idea was put forward that coinduction is new only
by name, while it had actually been around for a long time, concealed within
the infinitistic methods of mathematical analysis. Roughly,

induction  coinduction
~

arithmetic ~  analysis
The infinitary constructions in elementary calculus are coinductive, just like
the infinitary constructions in elementary arithmetic are inductive. However,
all evidence presented in [16] was built upon a datatype of real numbers,
assumed as given. In the present note, we describe several ways to derive this
datatype from scratch, as a final coalgebra.
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In the simplest and the most abstract form, the idea is to view an infinite
object x as a stream, i.e. an infinite list [xg, 21,22 ...] of elements from some
set 2. Construed as a rudimentary process, this stream reduces to an action,
and a resumption, i.e. the “head”

h(x)=xq

and the “tail”., another stream

tx)=a" = [y, 29,23...]
But the pair
< ht>:2Y =¥ xX¥

is, of course, the final coalgebra structure for the functor ¥ x (—) : Set — Set.
Although this simple picture, and the related coalgebraic ideas, are nowa-
days probably not far from becoming a standard part of the basic toolkit for
designing datatypes, and perhaps even systems in general [8,18], it may nev-
ertheless come as a surprise that the idea to implement real numbers along
these lines can be dated as far back as 1971 — and to the writings of the
first “hackers”, of all places! In the famous Hakmem report, R.W. Gosper
and R. Schroeppel took up analyzing (among some 200 other computational
themes) real arithmetic in terms of continued fractions. The main result ap-
pears to be Gosper’s derivation [6, 101B] of a general algorithmic scheme for
implementing arithmetic operations and methods of successive approximation.
He begins as follows:

Let x be a continued fraction

4o do
pot+t——————=po+ —
T

¢
pl —I_ p2 _I_ .
where 2’ is again a continued fraction and the p’s and ¢’s are integers.| ... |
Instead of a list of p’s and ¢’s, let & be a computer subroutine which
produces its next p and ¢ each time it is called. Thus on its first usage, x
will “output” pg and ¢ and, in effect, change itself into z’.

Real numbers are thus presented as streams of pairs of integers. The men-
tioned coalgebraic structure, although never spelled out, is then employed in
the subsequent constructions, as well as in the discussion touching upon some
of the still very active themes, such as guarded induction [14,15], or the role
of redundancy in representation.

It may seem ironic that what we now consider to be a very general com-
putational method had an early brief appearance, even on the background,
among the primordial “hacks”. But this is probably just an instance of the
irony of language.

In any case, although Hakmem was never published, it has remained avail-
able throughout the intervening years, it was widely read, and sometimes even
cited. But while the algorithms derived in it have been acknowledged as the
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source of inspiration for some of the most interesting modern approaches to
exact real arithmetic [5,10,20], the underlying coalgebraic idea seems to have
gone unnoticed.

While hoping to point to this conceptual link, we must add that the con-
structions on the following pages should not be taken as a rational recon-
struction of the Hakmem view of reals. In fact, they were obtained while we
were trying to work out an effective underpinning for our wider calculus-by-
coinduction effort, initiated in [14,16]. The coalgebras presented here are just
one detail in that plan. However, the realization that a concrete coalgebra of
reals was never worked out, although its effects were in use for quite a while,
made us try to present it here.

2 Lists and streams

Definition 2.1 Let ¥ be a set. A Y-stream algebra is a set A together with
an isomorphism

<h,t>

AT E Y x A

O

In other words,

hia:x)=a
taa)=ux
h(z) t(x)=x

where a :: B is the infix notation for c¢(a,x).

Definition 2.2 A Y-list algebra is a set B with a distinguished element [],
and an isomorphism

<h,t>
—_— >
B*T_ = Y xB

O

where B = {[]} + B*.

A list algebra structure on B thus corresponds to an isomorphism B = 1 +
Y xB

Examples. The basic example of a list algebra is, of course, the set ¥* of
lists from X: the operations are clearly A = head, t = tail and ¢ = cons. The
distinguished element [] is the empty list.

The basic example of a stream algebra is the set X% of streams, or infinite
lists from X. The set X of lists and streams together, i.e. of finite and infinite
lists, is again a list algebra.

The set A of analytic functions (say) at 0 also forms a stream algebra, with
the structure
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a: fla)=a+ [ f(t)dt
The Taylor expansion induces an isomorphism of A with the subalgebra of R¥,
consisting of the streams of Taylor coefficients. A method for implementing
parts of basic differential calculus in terms of stream algebra has been outlined
in [16].
Coalgebras. List and stream algebras are usually derived from initial alge-
bras and final coalgebras.

By definition, given a functor ' : C — C, an F-coalgebra is simply an
arrow A % FA. A coalgebra homomorphism from A % FA to B % FBis
an arrow g : A — B such that Flgoa =bog.

As mentioned in the introduction,

<h,t>
N —5 M x X

is the final coalgebra for the functor ¥ x (—) : Set — Set. Its finality means

that every coalgebra X ¢ 5% X induces a unique coalgebra homomorphism

(£, s].

)l( <k,s> Yo X
|
| |
[k,s)]: :Ex[k,s)]
| |
Y Y
X 2X X
The image of * € X is the stream [k, s)(z) = [zo, 71, ...], where x; = ks'(z).

Dually, an algebra for F' : C — C is an arrow FA % A. The algebra
homomorphisms and the notion of initiality can be obtained by reversing the
arrows of the corresponding coalgebra statements. An initial algebra for the
functor 1 + ¥ x (—) : Set — Set is

143 5y ey
induced by the list algebra structure. The final coalgebra for the same functor
is the set ¥ of finite and infinite lists, with the structure map derived from

Y

list algebra again.

By the Lambek lemma [11], the structure map of every initial algebra,
and every final coalgebra, must be an isomorphism. Therefore, the initial
algebras and the final coalgebras for the functor 1 + ¥ x (=) : Set — Set
always satisfy the list algebra equations. The initial algebra for the functor
¥ x (=) : Set — Set is empty, but the final coalgebras yield stream algebras. !

1 One might ask why we are calling them algebras, rather than coalgebras then. Someone
else might reply that they can be made into an algebraic theory; on the other hand, it needs
to be mentioned that algebras for an algebraic theory are not the same thing as algebras
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Reals as streams. The goal of the present paper is to derive real numbers as
list and stream algebras. There are infinitely many irredundant presentations
of reals as lists or streams of positive integers, some of them convenient for one
purpose, some for another. We spell out three crucial examples, and explain
their relations. This should suffice for extracting other examples, although no
surprises are to be expected there.

All the obtained representations of reals turn out to be based on final coal-
gebras for the functors N x (—) : Set — Set and 1 + N x (—) : Set — Set
respectively, where N is the set of natural numbers. The finality of the coal-
gebras of reals accounts for their coinductive nature, just like the initiality of

the algebra 1 + N @ N of natural numbers is well known to account for the
induction on them. The presented constructions can thus be viewed as a fur-
ther piece of evidence for the idea that the coinduction plays in mathematical
analysis a role similar to that of the induction in arithmetic.

3 Coalgebras on [0,1)

While analytic functions decompose by the Taylor expansion into streams of
real numbers, real numbers will be analysed as streams of natural numbers.

It is of course a matter of taste “which” set of natural number to use in the
following presentation. The more complicated among our examples appear a

bit simpler with N = {1,2,3,...}.

3.1  Monotone dyadics

The simplest stream algebra, say, on the interval [0, 1), can be derived directly
from the usual binary notation. It is well-known that disallowing the infinite
tails of 1 makes this notation irredundant: each element a« € [0,1) can be
written in exactly one way, e.g. ¢ = 0.011101001111000.... We assume that
these streams are always infinite, padded with zeros if necessary.

By partitioning the stream by the occurrences of 0s, and recording the
length of the substrings 1---110, each legal binary stream induces a unique
N-stream, and vice versa. For example 011101001111000... corresponds to
[1,4,2,1,5,1,1,...], by

0 1110 .10 0 11110 0 0
Y YT Y Y

Of course, one could start N from 0 as well, and not count the 0 into the
length of 1---110, as to get [0,3,1,0,4,0,0,...] instead, the choice made for
section 5. Here it is natural to read the 0’s as commas and the blocks of 1’s

for a functor. Trying to avoid overloading algebra seems hopeless.
2 As an initial algebra for the functor 1+ (=) : Set — Set, natural numbers can, of course,
be viewed as finite lists of a single symbol. This is their unary notation.
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as tally notation. The above choice, no zeros, is made with an eye on later
examples in sections 3 and 4.

This idea, which can be found in Hausdorff [7, §10], yields stream algebra
on [0,1)

h(x) = pun. 1—i>:1; (=1—[log(l—a)])

2n
t(z)=2—2"=) (1 — ) (1)
1 n 1 n x _1 2—ux
n.iTr= 5 2”‘1 on = on

where un. ®(n) denotes the least n satisfying ®. The head h,,(z) is thus the
length of the string 1---110 leading the binary presentation of x. The tail
t(x) is the real number corresponding to the binary stream obtained when this

string is deleted.

The induced coalgebra [0, 1) M N x [0,1) is final, i.e. isomorphic with

the familiar coalgebra N of streams. The isomorphism [0,1) = N* can be
understood as follows.

In order to get a stream [ag, a1, az,...]| corresponding to a number a €
[07 1)7
* keep adding % + 2% + 2% ... until adding for the first time 2% overshoots «a;
set ag = n;

e tothe sum %_|_. S 2n1_1 (which is thus < a) further add 2,11“ + 2,}+2 + 2n1+3 +...

until adding zim overshoots a; set a; = m — n; and so on.

In terms of the described stream algebra structure, a;, of course, is just ht‘(a).

The other way around, the isomorphism will assign to a stream [ag, a1, ...] €
N“ the number

-2 ()50 e

k=1
where @_; = 0 and @; = 22:0 ay. For instance, [1,4,2,1,...] will thus go to
1 4 2
—~
1<1 11 1<1_|_1< >>>
2 2 4 8 16\2 4

1 1 1 1 1
“ptytatm iyl

i.e. to the binary number 0.0111010... .

3.2 Alternating dyadics

A slightly different procedure of approximating a € [0, 1) is to

* keep adding %—I— 2% + 2% ... and stop only after the sum reaches or overshoots
a; but stop immediately after this, so that the difference between the sum
and a remains less than the last summand added, say 2% Set ag =n

6



PraTT

¢ Since the tail 2nl+1 + 2nl+2 + 2n1+3 ... adds up to 2%,

one by one from the previous sum, must eventually, say after subtracting

subtracting its elements

m elements of this tail, lead below a. Set a; = m.

o Then start adding again the further elements of the tail, until we get above
a, and so on.

This is the alternating binary approximation. The structure induced on [0, 1)
is

h(z)=pn. 1 -2 >a (= —[log(l —x)])

t(x)=2"1 —2)—1 (3)
1 1 1 —2 I+2

n:::z;:§—|--"—|-2n_1—|- o (Zl_ on )

Note however that h(0) = 0 falls out of N. But without 0 on the left hand

side, the above structure yields an isomorphism (0,1) = N x [0,1). In fact,

here we have a list algebra [0,1) M LN x [0,1), where h and ¢ can be

viewed as undefined on 0, or assumed to send it to 1 = {< 0,0 >}.
In any case, [0,1) still appears a final coalgebra, albeit for a different
functor. It is isomorphic with the “canonical” final coalgebra

<head,tail>
EEE—

I\ 14 N x N*
consisting of the finite and infinite lists. The element of 1 plays the role of the
head and the tail of the empty list.

The isomorphism [0, 1) = N> takes a € [0,1) to the list [ag, a1, ...], where
a; = ht'(a). This list terminates after n entries if t"(a) = 0, so that ht"(a)
falls out of N.

The other way around, given a list [ag, a1, ...], the corresponding number
will be
00 S ¥ k
(=D'\~ (1
Sy LU g
=0 k=1

again with a_; = 0 and @; = Ez::o x;. This time, the stream [1,4,2,...] will
correspond to

11 1+1+1+1 -I-l 1_|_1
2 2\2 4 8 16 32\2 4/ 7

1 1 1 1 1 1 1

The real interval [0, 1) is thus identified not only with the streams of pos-
itive integers, but also, in a different way, with their lists.
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3.3  Continued fractions

A regular continued fraction® expansion of a € [0,1) is in the form

1
Qiy1= | —7T
ai—1 o ai

Here || denotes the greatest integer below x, and a_y = a. This yields
another bijection from the real interval [0,1) to the lists of positive integers
N*_ finite or infinite, with the empty list corresponding to 0.

Such bijections correspond to the list algebra structures on [0,1). Writing
|| in terms of un, the above expansions yield

1

hix)=pun. ——
(x)=un m—— <z
1
o)=L~ i) (5
1
noa=
n+ax
The list [ao, a1, az,...], corresponding to a given a € [0,1) can, of course, be

computed as [h(a), ht(a), ht*(a),...], but the following procedure, essentially
from [6], shows better what is going on:

111 i 1 — . P0 _— 1
* test 3,3, 7,... until A falls below a, then set ag = n; = - ls the first
convergent of a;
L1 2 3 1 _(m+1)po . — -
* then go up: 21! TaeT T’ Baug 1) until o COmes above a; set a; = m; the

P1

second convergent of a is &2 = —X

(which is always a reduced fraction);

1 arap+1
S +p1 po+2p1 -1 po+({+1)p1 . _ p2
¢ down again: £ ..., until 2R a; set a9 = £, and & =
g qgo+q1’ qo+2q1° ’ go+(l+1)q < @ 2 ’ q2
potazpi.
qo0+az2q1’

. . i—1+pi pi—1+2p;
o then up again, always adding Zi=td2: Piit2p

qi—1+q: 7 qi—1+2q;’
) g ime
Ditl — Pisl¥@i1Pi j¢ poached . ..

qit1 qi—1+tai+1¢:

..., until the next convergent

The convergents thus alternate, with % > a and Z;fﬁ < a. Approximating a

can be understood as finding the convergent 2242 vet closer to «a, in the form
q2i42 ’
?
w, thus belonging to the interval <M, pﬁ} The number « is now
q2iF+a2i4+292i+1 g2i+1 7 g2

3 General continued fractions allow more general numerators.
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P2it1  P2it2
q2i41 7 92i42

, and the next convergent Z;’:ﬁ is sought there.
k2

Reversing this process, the number a € [0, 1) corresponding to a given list

[ag, @i, ...] along the isomorphism [0, 1) = N* is obtained as
a= lim il
11— 00 q,L
where
P-1 = 0 41 = 1
po =1 qo = o

Pi+1 = Pic1 T @i1Pi Qg1 = Gim1 T Q416G

3.4  Comparisons

Each of the described structures is based on a suitable decomposition of the
interval [0,1) on countably many subintervals homeomorphic to it, which are
then mapped by < h,t > to its countably many copies in N x [0,1). In the
alternating dyadic coalgebra, this mapping is arranged as follows:

0,1) = {0} + (01/2] + (1/23/4] + (3/4,7/8] +...
l ' ' ' ' (6)

14N x[0,1) = {<0,0>} + {1}x[0,1) + {2}x[0,1) + {3}x[0,1) +...

The monotone dyadic coalgebra differs only by the fact that the subintervals
are in the form [0,1/2),[1/2,3/4) and so on, so that 1 is not needed.
But the continued fraction coalgebra looks different:

1) = {0} 4+t [mpor) +o+ [1/31/2) + [1/2.)
l ' ' ' ' (7)

14Nx[0,1) = {0} 44 {n}x[0,1) +--+ {2}%x[0,1) + {1} x[0,1)

The transformation on [0, 1), induced as the isomorphism of these two final
coalgebra structures is continuous, but rather cumbersome to describe. It
maps (0,1/2] to [1/2,1), (1/2,3/4] to [1/3,1/2) and so on.

It is not hard to see that any decomposition of [0, 1) into countably many
subintervals homeomorphic to it will induce a list or stream algebra, isomor-
phic to either N* or N¥. However, while “invisible” for coalgebra homomor-
phisms, the choice of the decomposition determines what is easy and what
hard to do with each such representation.

Exploiting this difference is one of main tricks of coinductive programming
[14,15]. E.g., while isomorphic as coalgebras, analytic and coanalytic func-
tions [16] bear significant computational differences: the Laplace transform
maps differential equations over analytic functions into algebraic equations

9
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over coanalytic functions; the inverse Laplace transform maps back the solu-
tions of the latter into the solutions of the former. So isomorphisms do make
a difference!

For instance, the alternating dyadics yield the best dyadic approximation
of @ € [0,1). If an n-th partial sum o, of (4) has the reduced form Iz, then

la— o, <Ja— —]|
929

holds for all integers r. Indeed, by the construction of o,,, ¢ is @, and |a—0,| <
Iy

On the other hand, it is well-known, and fairly clear from the described
construction, that continuous fractions yield the best rational approximation,

1.e.
ja— 2 <ja— 1
dn qn

holds for any convergent £~

o of a, and any integer r.

4 Coalgebras on [0, )

Transferred along the homeomorphism

[0,1) «— [0, c0)

T —
1l —2a

—H
14y Y

the described coalgebras on [0, 1) can be given explicitly as follows.
We have first the monotone dyadics,

hy)=pn.2"—1>y (=14 [log(l+y)])
14y

1
n::yzZ”ﬂ—l
24y

the alternating dyadics,

hy)=pn. 2" —=1>y (= [log(l +y)])

1 9h(y)-1
=3 (75— 1) )
1
ny=2" +y —1
142y

and the continued fractions,

10
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5 Continuum as Coalgebra, Formalized

We now formalize the above intuitions categorically. We start by fixing the
ambient category to be Pos, posets. We know of no analogous technique that
works in Set short of externally imposing the desired order and/or topology
on the coinductively defined sets. In Pos we can obtain the desired structure
without such deus ex machina intervention.

The significance of our definition of the reals is that it exposes the following
appealing parallel between the continuum and the natural numbers. Whereas
the ordinal w has a natural presentation as the initial algebra of the functor
1; X (converse ordinal sum with 1, i.e. prepend unity to the given poset), the
ordered continuum has just as natural a presentation as the final coalgebra
of X -w (ordinal product with w, i.e. arrange w copies of the given poset in
order).

To pass from R qua poset to R qua topological space, observe that the order
type of any chain uniquely determines its topology when the latter is taken to
be the order interval topology,® as is the usual case for the continuum. Hence
our definition characterizes the continuum not only up to order isomorphism
but as a corollary up to homeomorphism.

5.1 Ordinal Sum and Product

In the category Pos of posets, concatenation or ordinal sum X;Y is definable
as cardinal sum (coproduct or juxtaposition) X +Y with its order augmented
with ¢ < y for all z € X,y € Y. Similarly, lexicographic or ordinal product
X .Y is definable as ordinary or cardinal product X x Y with its order aug-
mented with (x,y) < (a',y’) forall z,2"in X and ally < ¢ in Y (so Y supplies
the “high order digit”). Equivalently, X - Y is the result of substituting one
copy of X for each element of Y, with the resulting order being that of X
within each copy, and that of Y between copies.

Both operations are associative, not commutative, and preserve the pose-
tal extremes of each of linearity (chainhood) and discreteness (sethood), as
pointed out by Birkhoff [3,4], the inventor of the posetal unification of cardi-
nal and ordinal arithmetic.

4 The order interval topology on a chain (more generally any lattice) has for its open sets
arbitrary unions of open intervals of the chain [19, §5.15].
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Birkhoft’s colleague Mac Lane at Harvard invented functors too late for
any impact on Birkhoff’s invention. The sum (coproduct) functor on Set is
reflected into Pos to define the extension of X;Y from objects to morphisms,
readily seen to be a functor. One might suppose the same to be true of ordinal
product, but functoriality fails for the second argument as may be illustrated
with the quotient f : 2 — 1 of the two-element chain 2 = {0 < 1} to the
singleton poset {0}. Consider the morphism 15 - f:(2-2) — (2-1). Viewing
2-2as00 <10 <01 <11 and 2-1 as 00 < 10, 2- f must take 00 and 01 to 00,
and 10 and 11 to 10. But then (2- f)(01) < (2- f)(10), violating monotonicity.

Ordinal product is however functorial in its first argument. To see this,
let X vary while holding Y fixed. It suffices to show that for any monotone
function f : X — X’ (the agent of variation), the function f-1y : X-Y — X"V
given by (f-1y)(z,y) = (f(x),y) is monotone. That is, if (x,y) < (2/,y’) then
(f(x),y) < (f(z),y"). But when y # 3’ the order depends only on y and ¢/,
while when y = ¢’ it depends only on x and 2/, satisfying monotonicity in
either case.

5.2 First Functor

Define Fj : Pos — Pos as
F(X)=X" w.

Theorem 5.1 The final coalgebra of Fy is order isomorphic to the unit real
interval [0,1) (equivalently the nonnegative reals RT) standardly ordered.

Proof. Since Pos has all limits including the empty limit 1, we may construct
the final coalgebra of Fy as the limit of ... — Fi(Fi(1)) — Fi(1) — 1, where
the map from F*(1) to F*(1) is F'(!) and ! : /(1) — 1 is the unique map
to 1. Since limits in Pos are computed as for Set on the elements (unlike the
case of colimits, coequalizers being the troublemaker) it follows that the final
coalgebra of F; has as underlying set w®, i.e. streams of natural numbers.
The induced order on w“ can then be verified to be lexicographic, giving the
monotone dyadics of section 3, the first representation we treated, which we
saw there to be order isomorphic to the reals. a

Corollary 5.2 w* with the order interval topology induced from its lexico-
graphic ordering is homeomorphic to [0,1) with its usual topology, since the
latter is also the order interval topology.

5.8  Second Functor
Define F; : Pos — Pos as
F(X) =1;(X7 - w).

Here X denotes the order dual of poset X while 1 denotes the singleton poset.
The constituent operations of the definition all being functors, so is F». (Note

12
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that X as a functor does not reverse morphisms, only objects.) Since Pos is
complete, [y has a final coalgebra.

Theorem 5.3 The final coalgebra of Fy is order isomorphic to [0,1).

Proof. As for [} we start from the corresponding final coalgebra for Set.
The only relevant difference is 1;, which in Set becomes 1+, for which the
final coalgebra augments the set w* of streams with the set w* of lists.
Passing now to Pos, the effect of X° is to alternate the lexicographic order:
the zeroth, second, fourth, ... numbers in the stream are ordered standardly
while those in the odd positions are reverse ordered. (Interchanging even
and odd here is immaterial, yielding an isomorphic final coalgebra.) This
ordering corresponds to the alternating dyadics, the second representation of
the continuum treated in section 3. O

Other compositions of familiar functors on Pos suggest themselves. Their
final coalgebras will necessarily exist, Pos being complete as noted above, but
they need not be order-isomorphic to the continuum. Two obvious functors
intermediate between Fi(X) and Fy(X) are w - X? and 1 + w - X. Up to
homeomorphism, the final coalgebra of the former is R — @, the irrationals,
or Baire space. That of the latter is R + Q 4+ {—oc}, the rationals duplicated
(as an ordered pair with nothing in between), or Cantor space.?®

6 Future work

As explained already by Brouwer, canonical representatives make algebraic
operations on reals undecidable. The problem is circumvented by redundant
representations. Indeed, we originally obtained the alternating dyadics as
a retract of a coalgebra with redundant representations of reals, developed
following Conway’s game theoretic constructions. Conway’s description of the
field structure readily lifts to this coalgebra. It seems likely that the structure
can then be transferred to alternating dyadics along the retraction, but this
has not yet been worked out in detail. The structure could then also be
transferred to continued fractions along the isomorphism described in section
3.4. We are hoping to return to this theme in a forthcoming paper.

While not suitable for direct algebraic operations, the irredundant coalge-
bras described here will probably have a role in providing quick output, e.g. in
particular applications of Newton or Runge-Kutta method. This follows from

> To see the correspondence between the recursive middle-third construction of Cantor
space and the duplicate-rationals construction, also obtained as the order filters of (O in the
course of Dedekind’s construction, follow the removal of (%, %) by stretching the lower third
[0, %] to [0, %] and dually for the upper third, thereby restoring everything while duplicating
5. The recursion similarly duplicates the remaining dyadic rationals, a dense set in [0,1)
and therefore sufficient for the claim. This argument points up the importance of defining
the middle third to be open: taking it to be closed would instead produce Baire space, while

taking it to be half-open would simply reproduce the continuum!
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their “best approximation” properties, but also obviously requires detailed
research.

We have been unable to answer the following question arising out of this
work. The two functors 1; X and X -w involve respectively sum and product,
albeit of the ordinal kind. This hints at some sort of duality between numbers
and reals. One can talk vaguely of disconnected vs. connected, but does a
more formal duality lurk in the shadows there?
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