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Abstract

In [9] we have argued for a representation of processes taking into account

computationally relevant morphisms. It has been shown that the category of syn-

chronous processes, modulo strong bisimulation, with the bisimilarity preserving

simulations, is isomorphic with a particular subcategory of transition systems

with graph morphisms.

In the present paper, we extend this representation to asynchronous processes,

modulo the weak and the branching bisimulations and congruences. They are

shown to correspond to further interesting subcategories of the category of tran-

sition systems. The form of the representatives in the case of the branching bisim-

ilarity suggests possible connections with game theory. An abstract construction

of a category of processes in a general setting is presented in the appendix.

1 Introduction

As a first approximation, processes are presented as directed graphs of states and transitions: a

computation is a directed path of transitions, a run from state to state, starting from the initial

one. The transitions are labelled by the actions taken.

However, many different graphs remain indistinguishable when only such runs are ob-

served. The computationally irrelevant properties of graphs are factored out by defining pro-

cesses as classes of observationally equivalent, bisimilar graphs. But large classes of graphs

are not very convenient to work with, and one tries to pick a canonical representative from each

of them. This boils down to extracting a class of graphs that display only the computational

behaviour of a process, free of geometric redundancies. In [9], we have described a category

of irredundant transition systems, which couniversally represent synchronous processes, i.e.

strong bisimilarity classes. The treatment is now extended to asynchronous processes, induced

by weaker notions of bisimilarity. Such representations are necessary for logical studies of

processes [10]. The new task will be reduced to the previously solved one. In each weaker

bisimilarity class we shall find a strong subclass, in fact a retract, for which we already have

a representative. This retraction is worked out in section 3, after the categorical framework

needed for it has been introduced in section 2 (based on a universal construction frome the

appendix). The actual representation of asynchronous processes is in 4, while 5 outlines modi-

fications needed for capturing processes with respect to the generated congruences.
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2 From graphs to processes

We begin with the category of reachable transition systems, as described in [9]. The only

additional feature is the distinguished label τ ∈ Σ, denoting silent actions [7, sec. 2.3]. It has

no reprecussions for the category, but allows conceptual refinements, leading to richer notions

of (bi)simulation and of process. While the strong bisimulations [8, 7] take all actions into

account, the weak (or observational) equivalence [4, 7] discards the silent actions from the

output, and only takes their power to preempt other actions into account. However, it evens

out different trees of silent actions, and remains too crude for some situations. The suitable

refinement is the notion of branching bisimulation [3, ch. 3], which fully respects the branching

structure of a process, including its silent parts. We shall now align the three notions formally,

and derive three categories of processes.

To analyse them in categories, we shall treat bisimulations as internal full binary relations

in various categories of transition systems. An internal relation between transition systems P

and Q consists of a binary relation on their states and a binary relation on their transitions. The

former always relates the initial states. The latter only relates transitions with the same label.

Finally, whenever two transitions are related, their source states must also be related, as well

as their target states. An internal relation is full if the converse holds as well: two transitions

are related if and only if they have the same label, and related sources and targets. Obviously,

such a relation is completely determined by its state component. Our categorical bisimulations

are thus equivalent to the original ones, which are just relations on states (given in terms of

transitions).

As usually, x
a
−→ x′ denotes a transition, or the statement that it exists; x0

∗
։ xn abbrevi-

ates a silent run x0

τ
−→ x1

τ
−→ x2

τ
−→ · · ·

τ
−→ xn of length n ≥ 0. An empty run x0

∗
։ x0.

Definition 2.1 An internal relation P ←− R −→ Q in the category of transition systems is a

strong simulation if it satisfies

x
a
−→ x′ ∧ xRy =⇒ ∃y′. y

a
−→ y′ ∧ x′Ry′ (1)

x
a
−→ x′ ∧ xRy

∧y
a
−→ y′ ∧ x′Ry′

 =⇒

(
x

a
−→ x′

)
R

(
y

a
−→ y′

)
(2)

for all states x, x′ ∈ P and y ∈ Q. It is a weak [resp. branching] simulation if it satisfies (2) and

x
a
−→ x′ ∧ xRy =⇒ ∃uu′y′. y

∗
։ u

a
−→ u′

∗
։ y′ ∧ x′Ry′

[
∧xRu ∧ x′Ru′

]

∨ (a = τ ∧ x′Ry) (3)

A strong (resp. weak, branching) bisimulation is a strong (weak, branching) simulation

P ←− R −→ Q such that the dual Q ←− Ro −→ P is a strong (. . . ) simulation too. The

transition systems P and Q are strongly (. . . ) bisimilar if there is a strong (. . . ) bisimulation

between them. The strong, weak and branching bisimilarities are respectively denoted by ∼, ≈

and ≅.
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In pictures, the above definitions say that each span

x

R

a // x′

y

extends to

x

R

a // x′

R

y
a // y′

in the strong case, (4)

to

x

R

a // x′

R

y
∗ // // u

a // u′
∗ // // y′

or

x

R

a=τ // x′

R

y

in the weak case, (5)

and to

x

R

a //

R

x′

R

y
∗ // // u

a // y′
or

x

R

a=τ // x′

R

y

in the branching case. (6)

Note that omitting u′ in the branching case does not change anything: one can always take

u′ = y′.

These notions now induce three poset-enriched categories, with the reachable transition

systems as objects and the simulations as morphisms. Restricting to the sober simulations, we

get the categories C∼, C≈ and C≅, to which we apply the construction from the appendix, and

get the categories of processes P∼, P≈ and P≅. The components of the families ∼, ≈ and ≅ are

in each case the largest bisimulations.

Let us sumarize what the obtained categories of processes look like. For any family of

arrows/equivalence relation ψ ∈ {∼,≈,≅}, the objects of Pψ are the ψ-bisimilarity classes of

reachable transition systems. Given two such classes, Π and Θ, a morphism Π←− Ξ −→ Θ in

Pψ will be a class

Ξ = {P←− R −→ Q|P ∈ Π,Q ∈ Θ} ,

of ψ-simulations, such that for any P←− R −→ Q and P′ ←− R′ −→ Q′ holds

xψx′ ∧ xRy ∧ yψy′ =⇒ x′R′y′ (7)

xψx′ ∧ xRy ∧ x′R′y′ =⇒ yψy′ (8)

for all x ∈ P, y ∈ Q, x′ ∈ P′, y′ ∈ Q′. Respectively, these conditions say that Ξ is saturated

and sober. The latter says that the components of Ξ jointly preserve the ψ-bisimilarity, i.e. take

the computationally equivalent states to the computationally equivalent ones. The saturation

condition, on the other hand, says that if x and y are related, then everything equivalent to x

must be related to everything equivalent to y. The formal consequences of these conditions are

explained in the appendix. See also section 2.3 of the first part.

The obvious implications (4)⇒(6)⇒(5), induce the quotient functors P∼ −→ P≅ −→ P≈.

Note however, that the morphisms will fit only if the implications ∼-sober⇒≅-sober⇒≈-sober

are valid as well. This is not immediate, but it will follow from proposition 3.2.
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3 Relating simulations

In [9], we have described a subcategory I of irredundant transition systems, and shown that it

is strongly equivalent with P∼. In fact, its skeleton is even isomorphic with P∼. By definition,

an irredundant transition system must be reachable, and such that x ∼ x′ implies x = x′ for any

pair x, x′ of states. This irredundant representation, known in many forms, is actually universal

in a formal sense [9, sec. 5].

This picture of P∼ will now be used for representing P≈ and P≅. A transition system P

will be transformed into transition systems WP and BP, weakly resp. branching bisimilar to

P, and such that the weak resp. the branching simulations to and from P exactly correspond

to the strong ones on WP resp. BP. The idea how for such WP and BP follows from (4),

(5) and (6). To reduce (5) to (4), we must add in WP a transition x
a
−→ x′ whenever a path

x
∗
։ v

a
−→ v′

∗
։ x′ occurs in P; and a transition x

τ
−→ x for every state x. The obtained

transition system WP is thus the closure of P under the “composition” with τ-transitions.

The construction of BP is bound to be more complicated, since it must expand the trape-

zoid from (6) into two squares (4). The idea is that the transition x
c
−→ x′, c , τ, should be

expanded in two new transitions, corresponding to y
∗
։ u, and u

c
−→ y′ respectively. Moreover,

τ should be “closed under composition” with itself. The construction B itself will thus be the

composite of the constructions C and D, where

• C replaces each x
c,τ
−→ x′ with x

τ
−→
(
c

x
�
x′

) c
−→ x′, where

(
c

x
�
x′

)
is a new state; while

• D adds x
τ
−→ x′ whenever there is a path x

∗
։ x′.

All the described constructions induce endofunctors on the category of reachable transi-

tion systems. W and D are moreover idempotent monads, while C extends a comonad G, which

for all x
c,τ
−→ x′ adds

(
c

x
�
x′

) c
−→ x′ but not x

τ
−→
(
c

x
�
x′

)
. The units η : P −→ WP and η : P −→ DP

are given by the identity maps on the states, and the inclusions on the transitions. The counit

ε : GP −→ P maps both x and
(
c

x
�
x′

)
to x, the transitions

(
c

x
�
x′

) c
−→ x′ to x

c
−→ x′, and each

τ-transition to itself. These data now provide a weak bisimulation P
id
←− P

η
−→ WP and a

branching bisimulation P
ε
←− GP ֒→ CP

η
−→ DCP = BP. This is proved simply by the

inspection of definitions.

Proposition 3.1 For every reachable transition system P, the equality relation on the states

yields a weak bisimulation between P and WP. A branching bisimulation between P and BP is

obtained by extending the equality on the states of P with the pairs of the form
〈
x,
(
c

x
�
x′

)〉
.

Since a simulation is determined by its state component, and W does not change the states,

the W-image of a full relation P ←− R −→ Q can be defined as the full relation WP ←−

WR −→ WQ induced by the state component of the original. The B-image, on the other hand,

will be the full relation BP←− BR −→ BQ spanned by the state component of P←− R −→ Q

extended on the new states by
(
c

x
�
v

)
BR
(
d

y
�
u

)
⇐⇒ c = d ∧ xRy ∧ vRu. (9)
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In this way, we get enriched functors W : C≈ −→ C∼ and B : C≅ −→ C∼, which turn out to be

full and faithful, as a consequence of the following proposition.

Proposition 3.2 A full relation P ←− R −→ Q on reachable transition systems is a weak

simulation if and only if WP ←− WR −→ WQ is a strong simulation. It is a branching

simulation if and only if BP←− BR −→ BQ is a strong simulation.

Proof. We only prove the second statement, since the weak case is straightforward.

(⇒) Assuming that P←− R −→ Q satisfies (6) we derive that BP←− BR −→ BQ satisfies (4).

In BP, there are clearly three kinds of transitions to be simulated:

(i) x
τ
−→ x′, or

(ii) x′
τ
−→
(
c

x
�
v

)
, or

(iii)
(
c

x
�
v

) c
−→ v,

where x, x′ and v are old states, coming from P, while c , τ.

To discuss (i), suppose xRy. Since R is a branching simulation, there is y
∗
։ y′ in Q, with

x′Ry′. Hence y
τ
−→ y′ in BQ.

Towards case (ii), note that in CP, the state
(
c

x
�
v

)
can only be reached through x. The

transition x′
τ
−→
(
c

x
�
v

)
thus comes in BP from a path x′

∗
։ x

τ
−→
(
c

x
�
v

)
in CP. On the other hand,

x
τ
−→
(
c

x
�
v

)
comes from x

c
−→ v in P. So there must have been x′

∗
։ x

c
−→ v in P. Given

x′Ry′, the assumption that R is a branching simulation yields y′
∗
։ y

∗
։ u

c
−→ w in Q, with

xRy, xRu and vRw. But the transition u
c
−→ w from Q becomes u

τ
−→
(
c

u
�
w

) c
−→ w in CQ. The

path y′
∗
։ y

∗
։ u

τ
−→
(
c

u
�
w

)
in CQ now induces y′

τ
−→
(
c

u
�
w

)
in BQ. This transition simulates

x′
τ
−→
(
c

x
�
v

)
, since by (9), xRu and vRw imply

(
c

x
�
v

)
BR
(
c

u
�
w

)
.

Finally, for case (iii), suppose
(
c

x
�
v

)
BR z. By the definition of BR again, the state z must be

in the form
(
c

u
�
w

)
, for some u,w with xRu and vRw. The transition

(
c

x
�
v

) c
−→ v is thus simulated by(

c
u
�
w

) c
−→ w.

(⇐) Now assume that BP←− BR −→ BQ is a strong simulation, and take x
a
−→ x′ in P, with

xRy. If a = τ, (4) gives y
τ
−→ y′ in BQ, with x′Ry′. Hence y

∗
։ y′ in Q. If this is an empty path,

and y = y′, we have the triangle from (6); otherwise we have the trapezoid.

If a = c , τ, the transition x
c
−→ x′ becomes x

τ
−→
(
c

x
�
x′

) c
−→ x′ in BP. Since BR is a

strong simulation, this is simulated by y
τ
−→ z

c
−→ y′ in BQ, with

(
c

x
�
x′

)
BR z and x′BRy′. By the

definition of BR, y′ must be a state from Q, such that x′Ry′, while z must be in the form
(
c

u
�
y′

)
,

for some Q-state u with xRu. As pointed out before, the transition x′
τ
−→
(
c

u
�
y′

)
in BQ must have

originated from x′
∗
։ u

τ
−→
(
c

u
�
y′

)
in CQ. In Q, there is thus x′

∗
։ u

c
−→ y′, with xRu and x′Ry′,

just as required by (6). This completes the proof. �

5



The construction W induces a poset isomorphism between the weak simulations from P

to Q and the strong simulations from WP to WQ, because the state component of WP ←−

WR −→ WQ is the same as the state component of P←− R −→ Q again. Therefore, W is a full

and faithful enriched functor from the category of weak simulations to the category of strong

simulations. Since two states in P are weakly bisimilar if and only if they are strongly bisimilar

in WP, the functor W preserves and reflects the sobriety, and thus restricts to a full and faithful

enriched functor W : C≈ −→ C∼.

A similar reasoning leads to the same conclusion for B : C≅ −→ C∼. The fullness may

seem not as obvious this time, though. But note that the sources of the transitions labelled by

c , τ in BP are always the new states
(
c

x
�
x′

)
; and that all of them appear as such sources. Hence, a

strong simulation from BP to BQ must relate the new states among themselves. It must further

satisfy (9) — and thus appear in the form BR for some P←− R −→ Q.

4 The representation

The described functors on the categories of simulations now induce the full and faithful functors

W : P≈ −→ P∼ and B : P≅ −→ P∼. Proposition 3.1 implies that they are right inverse,

respectively, to the quotient functors P∼ ։ P≈ and P∼ ։ P≅. Although the construction B on

transition systems was not idempotent, the endofunctor that it induces on P≈ is. P≅ and P≈ are

thus retracts of P∼; the latter is even a reflective subcategory. They are thus also retracts of the

category of reachable transition systems and sober morphisms, since P∼ can be viewed as its

reflective category (cf. sec. 5 of the first part [9, sec. 5]). This is based on presenting P∼ as the

skeleton of the category I of irredundant transition systems [9, thm. 4.4].

Our next task is characterising the retracts of I corresponding to P≈ and P≅. They are

spanned by the images of the constructions W and B on I. The scheme of the representation is:

P Roo // Q P Roo // Q

≈

OO

��
≈

OO

��
≅

OO

��
≅

OO

��
WP WRoo // WQ BP BRoo // BQ

∼

OO

��
∼

OO

��
∼

OO

��
∼

OO

��
W̃P W̃R // W̃Q B̃P B̃R // B̃Q

(10)

The upper squares depict the contents of the previous section: the vertical bisimulations are

those from proposition 3.1, while 3.2 relates the horizontal sober simulations. The lower

squares are from [9, sec. 5]. The functor (̃−) assigns to each reachable transition system its

irredundant quotient, and to each sober ∼-simulation a graph morphism. Although I is not

closed under W or B, direct inspection of the definitions of W and B shows that their images

are closed under (̃−). The representatives W̃P and B̃P will thus be in the following forms.

Definition 4.1 A transition system is τ-replete if whenever there is a path x
∗
։ y, there is also

6



a transition x
τ
−→ y in it. It is c-replete, for c , τ if every path x

∗
։ u

c
−→ v

∗
։ y in it can be

“shortcut” by a transition x
c
−→ y. The replete transition systems are a-replete for all a ∈ Σ.

The irredundant replete transition systems span the subcategory I≈ of I.

A τ-strategy is a transition system in which the source of a visible transition is always

the target of exactly one transition, necessarily silent. In other words, if y
c,τ
−→ z, then there is

x
τ
−→ y, and no other transitions to y. Irredundant, τ-replete τ-strategies span the subcategory

I≅ of I.

Theorem 4.2 Pψ � Iψ, where ψ ∈ {≈,≅}.

Remarks. In a way, the repleteness embodies asynchrony: any action action can be delayed

by idling, and any action that can be taken after some idling can also be taken immediately.

However, such “shortcuts” may erase a part of the branching structure. In a τ-strategy, this is

prevented by separating visible actions from each other by silent actions. The idea behind its

name is that each visible move is given a unique silent response. The game is played towards

the initial state, which can be thought of as the final position. The side which plays a last move,

wins. The silent side wins using the τ-strategies.

Regardless of the relevance of this game theoretic picture, the point of the τ-replete τ-

strategies is to allow waiting to be extended at will, or reduced to one silent step — but not

completely eliminated. The branching structure is protected from these deformations by keep-

ing the visible and the silent layers of actions separated.

5 Congruences

Finally, let us turn to a conceptual shortcoming of the weak and the branching bisimilarities:

they are not congruences with respect to all of the process operations. In particular, the nonde-

terministic sum + does not preserve them [7]. Fortunately, the reason for this turns out to be

localized at the initial state. Bergstra and Klop [2] have observed that rooted bisimulations —

where the initial states are only related with each other — are always preserved under +. The

following lemma is probably folklore.

Lemma 5.1 A (strong, weak, branching) simulation P←− R −→ Q is rooted if and only if the

relations P + M ←− R + M −→ Q + M are (. . . ) simulations for all transition systems M.

Although simple and elegant, the root condition is not well suited for categorical treatment.

However, there is a weaker condition, due to Milner [7, ch. 7, def. 2], which yields the same

processes as the rooted bisimulations, and is easily captured in categories. It requires that a

transition in the form ι
τ
−→ x′ is never simulated by an empty path. The simulations satisfying

this requirement may not be rooted, hence they are not stable under sums; but if there is a

bisimulation between P and Q satisfying Milner’s requirement, then a rooted one must exist

as well. Roughly, the only reason why it may be impossible to simply drop a pair 〈x, ι〉 (or

〈ι, y〉) from a bisimulation is that the only transition simulating ι
τ
−→ x (or ι

τ
−→ y) may be
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ι
τ
−→ ι. The following definition thus yields processes as the rooted bisimulations. Similarly,

the induced process morphisms do not consist of rooted simulations, but each of them contains

rooted components (e.g., the tree morphisms), and this suffices for +-stability.

Definition 5.2 A relation P ←− R −→ Q in AΣ is a ι-weak [ι-branching] simulation if it

satisfies

x
a
−→ x′ ∧ xRy =⇒ ∃uu′y′. y

∗
։ u

a
−→ u′

∗
։ y′ ∧ x′Ry′

[
∧xRu ∧ x′Ru′

]

∨

(
x , ι ∧ a = τ ∧ x′Ry

)
(11)

and (2). A weak [branching] congruence is a ι-weak [ι-branching] simulation, the dual of

which is ι-weak [ι-branching] simulation as well.

The ι-weak and ι-branching simulations differ from the weak and the branching ones only

by the underlined part of (11); the rest is exactly like (3). The ι-simulations can thus be analyzed

along the same lines as the ordinary ones — just slightly modifying the constructions W and B.

Namely, everything remains the same, but no τ-cycles x
τ
−→ x must be added at x = ι. On the

representatives, this exception is expressed simply by restricting the τ-repleteness at the root.

6 Future work

The main point of our approach is to capture processes dynamically, in a category, with com-

putation preserving morphisms. Concurrency may have sailed well without such morphisms,

but the forest of its operations looks more and more like tensor calculus in the time when it was

based on bright physical intuitions, but the universal property of the tensor product had not yet

been understood.
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Appendix A: Quotient of a poset-enriched category

Let C be a poset-enriched category and Ψ a composition closed family of arrows in it, at most

one from each hom-poset. Write PψQ for the Ψ-arrow from P to Q. It is further required that

Ψ contains for each P ∈ C an endomorphism PψP, greater than idP; and also an arrow QψP

whenever there is PψQ in it. The family Ψ can thus be construed as an equivalence relation ψ

on the objects of C, realized by its arrows.

We want to form a quotient category P = C/Ψ. The objects should be the ψ-equivalence

classes of objects from C, the morphisms — the families of ψ-equivalent arrows between their

elements. Here the equivalence boils down to the requirement that all components of such a

family of arrows can be obtained by extending any of them along ψ, just like any element of an

equivalence class determines all of it. This seems to be a precondition of the existence of the

quotient map, a functor C −→ P. But it is not hard to satisfy.

Let Π,Θ be some ψ-equivalence classes of objects. A morphism Π Ξ // Θ in P will

now be a class Ξ of arrows P R // Q in C, one for each pair P ∈ Π, Q ∈ Θ, such that for any

R,R′ ∈ Ξ holds ψRψ ⊆ R′, or diagrammatically

P ψoo P′

R

��
⊆ R′

��
Q ψ // Q′

(12)

This is the saturation condition. Using the above assumptions about Ψ, we get R′ ⊆ ψR′ψ =

ψψR′ψψ ⊆ ψRψ, so that for all components any P-morphism actually holds

R′ = ψRψ. (13)

In particular, each of them is saturated, i.e. R = ψRψ. At any rate, each component pins down

a P-morphism by formula (13).

The quotient map C −→ P will, of course, take each object P to its equivalence class Π,

and each arrow P R // Q to the family of arrows P′ R′ // Q′ , one for each P′ ∈ Π and

Q′ ∈ Θ, which are obtained as in (13). Clearly, this family will consist of saturated morphisms,

satisfying R = ψRψ. In fact, the image of each morphism R along C −→ P is determined by

the saturation R = ψRψ. Clearly, saturation can be viewed as a functor C −→ C, where C is

9



the subcategory of C, consisting of the same objects but only the saturated morphisms. C is the

saturation of C.

To spell out the universal properties of the quotient P and the saturation C, we shall say

that a functor annihilates ψ on objects if it takes any two ψ-related objects to the same image;

that it annihilates ψ on arrows if each R has the same image as its saturation R = ψRψ; and that

it annihilates ψ if it does so both on objects and arrows.

Proposition .1 The quotient C −→ P is initial among those that annihilate ψ. The saturation

C −→ C is initial among those that annihilate ψ on arrows. The induced functor C −→ P is

full and faithful, and surjective on objects — hence a weak equivalence.

Appendix B: Categories of processes, abstractly

Now we want to focus on situations when C is a category of simulations, while Ψ consists of

maximal bisimulations. The quotient construction should thus yield the corresponding category

of processes.

In order to be able to express some special properties of simulations, one additional oper-

ation will be needed, namely the dualising

(
P R // Q

)
7−→

(
Q Ro // P

)
. (14)

A relation can always be dualized, but the dual of a simulation need not be a simulation. The

category C will thus not be closed under dualizing, but we shall assume that it is couched a

“category of relations”, providing the needed operation. For instance, C can be viewed as a

poset-enriched subcategory of an allegory or of a cartesian bicategory.

There are two additional requirements that need to be imposed on the arrows of C. Firstly,

each of them should be total, or formally:

id ⊆ RRo. (15)

Furthermore, they should all preserve the bisimilarity: indeed, a sound computational mor-

phism should preserve computational equivalence [9, sec. 2.3]. Formally, this means that all

R ∈ C should satisfy the sobriety condition

RoψR ⊆ ψ. (16)

But this is easily enforced: in specific cases, we simply restrict consideration to the sober

simulations.

A poset-enriched category C with total and sober morphisms can be construed as an ab-

stract category of simulations. Remarkably, the enrichment of such a category degenerates

under saturation: C turns out to be an ordinary category.
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Lemma .2 If P R // Q is a sober morphism, its saturation R = ψRψ is sober too. If,

furthermore, all morphisms from P to Q are total, the saturation R is the largest among them

which is both sober and contains R.

Proof. R is sober because R
o
ψR = ψRoψψψRψ = ψRoψRψ ⊆ ψψψ = ψ. For the second

statement, suppose that R̂ ⊇ R is sober. The totality now yields R̂ ⊆ RRoR̂ ⊆ RR̂oR̂ ⊆ RR̂oψR̂ ⊆

Rψ ⊆ ψRψ. �

Corollary .3 The saturation C of an abstract category of simulationsC is an ordinary category.

Proof. If R ⊆ R̂, and R̂ is sober, lemma yields R̂ ⊆ R. When R is saturated, this yields R̂ ⊆ R. �

The quotient P, constructed from a category of simulations by the method from appendix

6, is an abstract category of processes. The universal properties described in proposition .1

remain valid. The additional properties make P into an ordinary category, though, since it

is weakly equivalent to C. Another point worth emphasizing about P is that the bisimilarity

is preserved not just by the individual components of its morphisms, but also jointly, which

renders an apparently stronger, global notion of sobriety.

Proposition .4 If each component of aP-morphism Π Ξ // Θ is sober, then any two of them

R,R′ ∈ Ξ satisfy RoψR′ ⊆ ψ.

P Rooo Q

ψ
��

⊆ ψ
��

P′ R′ // Q′

(17)

Proof. RoψR′ = RoψψRψ = RoψRψ ⊆ ψψ = ψ �

Conditon (17) is the naturality requirement more suitable for a relational setting than the

ordinary one. When the relations involved in it are total (id ⊆ RRo) and single-valued (RoR ⊆

id), this condition is equivalent with the usual lax naturality ψR′ ⊆ Rψ. In general, though,

the two are incomparable, and (17) captures the ψ-preservation. Conditions (12) and (17),

fulfilled in each category of processes, were explained from a computational point of view in [9,

sec. 2.3]. A morphism satisfying them actually induces a partial map between the bisimilarity

classes of states at its domain and codomain. Since all simulations are total by assumption (15),

this map yields an honest morphism of transition systems.
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