
Composition and Re�nement of Behavioral Spei�ationsDusko Pavlovi and Douglas R. SmithKestrel Institute3260 Hillview AvenuePalo Alto, California 94304 USAAbstratThis paper presents a mehanizable framework forspeifying, developing, and reasoning about omplexsystems. The framework ombines features from alge-brai spei�ations, abstrat state mahines, and re-�nement alulus, all ouhed in a ategorial setting.In partiular, we show how to extend algebrai spe-i�ations to evolving spei�ations (espes) in suh away that omposition and re�nement operations ex-tend to apture the dynamis of evolving, adaptive,and self-adaptive software development, while remain-ing eÆiently omputable. The framework is partiallyimplemented in the Epoxi system.1 IntrodutionHow an we make the onstrution of omplex systemseasier and more reliable? To get a handle on the om-plexity, many researhers and engineers advoate anarhitetural approah to system design: a system istreated as a omposition of omponents together withthe onnetors that mediate their interation (e.g. see[10℄). Sometimes however, the goal of having a lear,simple arhiteture is at odds with performane goalsfor the system. A way out of this dilemma is to work to-ward a framework that allows the omposition of om-ponents and onnetors in a high-level arhitetural de-sign, followed by the re�nement of the design to ode.The re�nement proess may break down omponentand onnetor boundaries to optimize system perfor-mane, as well as introduing lower-level design dei-sions (suh as subsystem arhitetures, algorithms, anddata strutures).This paper introdues a formal framework, alledevolving spei�ations (or simply espes), that supportsthe spei�ation and development of omplex systems.Espes provide the means for expliitly modeling thelogial struture and behavior of systems. The frame-work supports preise, automatable operations for theomposition of espes and their re�nement. The es-pe framework is partially implemented in the Epoxi

system.Espes grew out of higher-order algebrai spei�-ations as implemented in Speware [11℄, the evolv-ing algebras of Gurevih (aka abstrat state mahines)[4℄, as well as the lassial axiomati semantis ofFloyd/Hoare/Dijkstra. Espes go beyond all three, notonly allowing the apture of logial struture and be-havior, but also the omposition of systems and theirre�nement to ode. Of ourse the omposition andre�nement operations are meaning-preserving, so thatany ode produed by means of omposition and re-�nement is guaranteed to be onsistent with the initialespes.The paper is strutured straightforwardly. We �rstdisuss how to extend logial spei�ations to modelbehavior, and then de�ne espes and how to re�neand ompose them formally. These onepts are illus-trated by simple examples. This paper presumes someknowledge of basi ategory theory (see [2, 11℄ for rel-evant bakground). More details about espes may befound in [8℄. Related approahes to providing ategor-ial foundations for speifying, omposing and re�ningbehaviors may be found in [3, 5℄.2 From Logial Theories toState Mahines/BehaviorsEPOXI is made of two basi building bloks: theoriesand translations (also known as theory morphisms).� A theory formalizes, in prediate logi, what isknown about a domain, or an artifat in general.A theory is omprised of a language and a subsetof the language alled theorems.� A translation is a morphism between theories:it maps the language (signature) of one theoryinto the terms of another one, while preservingtheir meaning and validity: type struture is pre-served, and the theorems are mapped to theo-rems. A translation is presented by a map from

the symbols in one theory to expressions in an-other. The map is applied reursively to translateexpressions.On this foundation we an formally model statemahines. A state of omputation an be viewed as asnapshot of the abstrat omputer performing the om-putation. A rudimentary omputer an be viewed asa set of stores, with an abstrat mehanism rewritingthe stored values. The rewrites are the omputationsteps, or transitions. As in many logial formalisms forbehavior (f. [4, 6℄, we treat states as (stati, mathe-matial)models of a global theory thyA, and transitionsas �nite hanges to the omponents of a state/model.For example, an array is represented as a �nite fun-tion, whose value may vary over the possible models.A transition ould orrespond to an assignment thathanged the array/�nite-funtion. The omputation ofa program spei�ed by thyA, evolving from state tostate, an be envisioned as \jumping" from model tomodel, in Mod(thyA).To see the onnetion between theories and trans-lations on one hand, and states and transitions on theother, onsider the orretness of an assignment state-ment relative to a preondition P and a postonditionQ; i.e. a Hoare triple P fx := eg Q. If we onsiderthe initial and �nal states as haraterized by theoriesthypre and thypost with theorems P and Q respetively,then the triple is valid i� Q[e=x℄ is a theorem in thypre.That is, the triple is valid i� the symbol map f x 7! egindues a translation from thypost to thypre. Note thatthe translation goes in the opposite diretion from the

state transition.In pratie however, one usually deals with ab-strat states rather than individual states/models. Inreasoning about programs, we are typially interestedin states that satisfy ertain properties, so we use spe-i�ations as general state desriptions, and pass frommodels to sets of models that are spei�ed by exten-sions of the global spe.The basi idea of espes is to use spei�ations (�-nite presentations of a theory) as state desriptions,and to use translations to represent abstrat transitionsbetween state desriptions.The spei�ation of eah state desription orre-sponds to its loal struture and properties/invariants.The spei�ation ommon to all state desriptions spe-i�es the global struture and invariants of the system.Any struture that is ommon to all states that a om-putation an reah is formalized as a (global) spei�-ation; the ommon struture inludes variables andtheir sorts, as well as axioms (global invariants) andoperations (global onstants).ExampleLet us see a simple program in this framework. Here,stad denotes a state desription, step a transition.The espe GCD-0 de�nes the onept of the greatest-ommon-divisor of two natural numbers and the statemahine spei�es the required behavior of a greatest-ommon-divisor omputation.espe GCD-base isspe ;; the keyword spe enloses the logial speifiationonst X-in,Y-in : Pos ;; X-in and Y-in are onstant positive integersvar Z : Pos ;; Z is a positive integer that varies over statesop gd : Pos, Pos -> Posaxiom gd-spe is ;; this axiom speifies the gd problemgd(x,y) = z => (divides(z,x) & divides(z,y)& forall(w:Pos)(divides(w,x) & divides(w,y) => w <= z))end-speprog ;; the keyword prog enloses the state mahine (empty in this ase)end-progend-espe

espe GCD-0 isimport GCD-basespe ;; the spe extends the spe from GCD-base with a theoremthm gd(x,x) = x ;; this theorem follows from axiom gd-speend-speprog ;; the keyword prog enloses the state mahinestad One init[X-in,Y-in℄ is ;; the initial state reeives X-in and Y-inend-stadstad Two fin[Z℄ is ;; this stad extends the global spe with a loal axiomaxiom Z = gd(X-in,Y-in)end-stadstep Out : One -> Two is ;; transition from stad One to stad TwoZ |-> gd(X-in,Y-in)end-stepend-progend-espeNote that the steps are expressed in terms of symboltranslations. Beause of the onnetion between trans-lations and transitions, we will heneforth use assign-ments instead; i.e. write x := e instead of x |-> e.Espe GCD-1, below, re�nes GCD-0. The prog ex-presses the lassial GCD algorithm, whih might havebeen generated by a design tati. GCD-1 extends thelogial spe of GCD-0 with two loal variables X and Y.Essentially, the re�nement adds a new stad and twolooping transitions that preserve the key loop invariantof the program: X and Y hange under the transitions,but always so that their GCD is the same as the GCDof the input values X-in and Y-in.espe GCD-1 isimport GCD-basespe ;; two new vars used to ompute GCDvar X,Y : Posend-speprogstad One init[X-in,Y-in℄ isend-stadstad Loop isaxiom gd(X-in,Y-in) = gd(X,Y)end-stadstad Two fin[Z℄ isaxiom Z = Xaxiom X = Y

axiom Z = gd(X-in,Y-in)end-stadstep initialize : One -> Loop isX := X-inY := Y-inend-stepstep Loop1 : Loop -> Loop isX>Y -> X := X - Yend-stepstep Loop2 : Loop -> Loop isY>X -> Y := Y - Xend-stepstep Out : Loop -> Two isX=Y -> Z := Xend-stepend-progend-espeIt is straightforward to hek that GCD-1 is inter-nally onsistent; e.g. to show that Loop1 orrespondsto a translation, we must showLoop; X > Y ` gd(X�in; Y�in) = gd(X � Y; Y)The orretness onditions of re�nements is ad-dressed in Setion 4.

3 EspesThe onept of espe is now formally de�ned.De�nition 3.1 A graph s onsists of two sets edgesand nodes, and two funtions, doms and ods fromedges to nodes.A shape is a graph s, whih is moreover� reexive, in the sense that there is a funtionids : nodes �! edges, whih assigns a distin-guished loop to eah node;� distinguished initial node i, and a set O of �nalnodes o;Together with the morphisms preserving all displayedstruture, shapes form the ategory Shape.De�nition 3.2 An evolving spe, or espe A on-sists of� a spe speA, and� a program progA, presented by{ a shape shapeA;{ a reexive graph morphismstA : shapeA �! extopAwhere extA is speA=Spe, the ategory ofextensions of spe speA;{ a labeling ond of the edges of shapeA by theformulas in the language of speA. That is,stA maps that nodes of shapeA to spes inextA, and maps ars u : a ! b to trans-lations in extopA : stA(u) : stA(a) stA(b).Furthemore, stA maps self-loops in shapeAto identity translations.It is often onvenient to also display the input andoutput interfaes, presented as parameter subtheories1Xi,!stad(i) and Xo,!stad(o), of the initial and the�nal states, respetively.Notation and terminology. The input and the out-put interfaes are usually written stad hnamei init[Xi℄and stad hnamei �n[Xo℄.If n is a node of shapeA, the odomain of stA(n)is written as stadA(n). If u : m ! n is an edge ofshapeA, its image stA(u) is usually written as stepA(u).In summary,

� stad assigns to eah shape-node n a state de-sription stad(n), whih omes with a translationstA(n) : speA �! stad(n);� step assigns to eah shape-edge u : m! n a step(or transition) step(u) : stad(m) stad(n), keep-ing S invariant, in the sense that the followingdiagram ommutes. speAst(m)
yyttttttttt st(n)

$$JJJJJJJJJstad(m) stad(n)step(u)oo4 Re�nementsWe now de�ne the onept of a re�nement (or mor-phism) between two espes. A harateristi of espere�nements is that logial struture and behavior re-�ne ontravariantly, in opposite diretions. If A re�nesto B, then the spe of A re�nes to the spe of B by atranslation, but the prog of B maps into the prog ofA, simulating it. So a re�nement preserves the logialstruture of A in B and preserves the behavior of B inA.De�nition 4.1 Given espes A and B, a re�nementf : A �! B onsists of:Af
��

= hspeA;fspe
��

shapeA stA // extopA i
�#
fstad???

???B = hspeB ; shapeB stB //

fshapeOO extopB if�speOO

� a struture map (or translation) fspe� a behavior map (or simulation) fprog =hfshape; fstadi, where{ fshape is a reexive graph morphism, pre-serving the initial and the �nal nodes,{ fstad is speA-preserving natural transfor-mation; this naturality and preservationamount to the ommutativity of Figure 1 forevery v : k ! ` in shapeB (see notes below).1By de�nition, the parameterX � S of a parametri spei�ation S[X℄ an be freely instantiated, without ausing any inonsisteniesin the parameterized spei�ation [7℄. This also aptures the idea of interfae.

stadA(fshape(k)) ^ ondA (fshape(v)) stadA(fshape(`))stepA(fshape(v))oo speAstA(fshape(k))jjVVVVVVVVVVVVVVVVVVVV
stA(fshape(`))66lllllllllllllfspe

��speBstB(k)
tthhhhhhhhhhhhhhhhhhhh stB(`)

((RRRRRRRRRRRRRstadB(k) ^ ondB(v)��

fstad(k) stadB(`)��

fstad(`)
stepB(v)ooFigure 1: Naturality Condition of a Re�nement� Together, fspe and fprog must also satisfy theguard ondition: for every edge v : k ! ` inshapeB and edge u = fshape(v) in shapeAstadB(k) ` ondB(v) =) fspe(ondA(u))� The inverse-image funtor f�spe ats on the ate-gory of extensions: f�spe(e) = e Æ fspe.Clearly, espes and re�nements form a ategory, whihwe shall denote ESpe.Intuition. The last diagram tells that the omponentsof fstad oherently extend fspe from the global spesspeA and speB to their extensions stadA and stadB .Just like speB re�nes speA beause it proves all for-mulas in the image fspe[speA℄, eah stadB(n) re�nesstadA(fshape(n)) beause it proves all formulas in theimage fstad(n)[stadA(fshape(n))℄. The strutural re�ne-ment is thus extended from fspe : speA �! speBto fstad : stadA �! stadB . Its naturality ensures thateah transition stepB(v) of B extends the transitionstepA(fshape(v)) of A.The guard ondition ensures that every behavior ofB maps to a behavior of A. There are stronger versionsof the guard ondition that also ensure that B simu-lates all of A's behaviors, and others that eliminatenondeterminism. Rather than ommit to one suh def-inition, we use several, but the guard ondition aboveis suÆient for the purposes of this paper.Let us return to the example in Setion 2. In there�nement from GCD-0 to GCD-1, fspe is a simple in-lusion, and fshape is given by the stad mapOne 7! OneLoop 7! OneTwo 7! Two

and the step mapinitialize 7! idOneLoop1 7! idOneLoop2 7! idOneOut 7! OutThree of the steps map to the identity step onstad One in GCD-0 beause they only hange the lo-al variables X and Y, orresponding to identity stepsin GCD-0 (sometimes alled stuttering steps). Chek-ing the omponents of the natural transformation isstraightforward { the proof obligations inlude showingthat fstad(k) is a translation for all nodes k in shapeA;e.g. that the axioms of stad One in GCD-0 translate totheorems in stad Loop in GCD-1. Cheking the guardondition is also straightforward; e.g. for step Loop1 inGCD-1, the guard ondition instantiates toLoop ` X > Y =) truewhere the onsequent is the guard on step idOne inGCD-0.5 ColimitsComposition of espes is arried out by the olimit op-eration. Colimits in ESpe are onstruted from theolimits in Spe, the limits in Shape, plus some wiringto onnet them in Cat. First of all, reall that allolimits an be derived from the initial objet and thepushouts. Of ourse, the initial espe onsists of theempty spe, and a one-state-one-step program (withthe state represented by the empty spe).To desribe the pushout of espes, suppose we are

given a span of espesspeAfspe
ttjjjjjjjj gspe

++VVVVVVVVVVspeB speCshapeAstA
��

shapeB fshape 55kkkkkkstB
��

shapeCgshapejjUUUUUUUUU stC
��

fstad
��

 gstad

�!
;;

;;
;;

;;extopAextopB f�spe 55llllllll extopCg�spejjUUUUUUUUUUUTo ompute the pushout, we �rst ompute the orre-sponding pushout of spes and the pullbak of shapes.speAfspe
ssggggggggggg gspe

,,ZZZZZZZZZZZZZZZZZZZZZspeB sspe ,,ZZZZZZZZZZZZZZZZZZZZZ speCtspessgggggggggggspeDshapeAshapeB fshape 44hhhhhhhhhh shapeCgshapellYYYYYYYYYYYYYYYYYYYYshapeD tshape 44hhhhhhhhhhsshapellYYYYYYYYYYYYYYYYYYYYIt is easy to see that M : Speop �! Cat maps theupper pushout to the pullbak at the bottom of theindued ube. shapeAstA
��

shapeBfshape 99ssssstB
��

shapeCgshapejjUUUUUUUU stC
��

shapeD tshape99rrrrsshapejjUUUUUUUUfstad
�� �
����
� gstad

��
&&
&
&&
&extopAextopB f�spe99tttt extopCg�spejjTTTTTTTTTTextopD t�spe99tttts�speiiTTTTTTTTTTIf fstad and gstad were identities, i.e. if the two bakfaes of the ube were ommutative, the fat thatthe bottom fae is a pullbak would indue a funtorstD : shapeD �! (speD=Spe)op. Sine they are not,

this funtor must be onstruted taking fstad and gstadinto aount. The image stD(k) of a node k of shapeDis now obtained as the unique arrow from the pushoutat the top to the pushout at the bottom of the followingube. speAstA(`)
��

speB tt
fspe iiiiiiiiistB(i)

��

speC,,
gspeYYYYYYYYYYYYYYYYYYY stC(j)

��

speDstD(k)
���
�
�
�
�
�
�
�

tt tspe iiiiiiiii,,sspeYYYYYYYYYYYYYYYYYYYstadA(`)stadB(i) uu
fstad(i) jjjjjj stadC(j),,

gstad(j)ZZZZZZZZZZ

WWWWWWstadD(k) uu tstad(k)jjjjjj,,sstad(k)YYYYYYYYYYYYYYYYSine shapeD is the pullbak of fshape and gshape, thenode k orresponds to a pair hi; ji of the nodes fromshapeB and shapeC , identi�ed in shapeA as the node` = fshape(i) = gshape(j). Of ourse, i = sshape(k) andj = tshape(k).This onstrution gives the node part stadD ofstD : shapeD �! extopD , as well as the omponents ofsstad and tstad. The arrow part stepD is indued by thefat that the bottom of the ube is a pushout, using thenaturality of fstad and gstad. This also yields the natu-rality of sstad and tstad. Finally we onstrut the guardsfor the edges of shapeD. Given an edge w : k ! k0 ofshapeD de�neondD(w) = sspe(ondB(sshape(w)))^ tspe(ondC(tshape(w)))A proof that this onstrution yields an espe with thedesired universal properties may be found in [8℄.Explanation. The pushout of spes is lear enough:the languages get joined together, and identi�ed alongthe ommon part. The pullbak of shapes produesthe parallel omposition of the behaviors they present.This is partiularly easy to see for produts, i.e. pull-baks over the �nal espe. For example, a produt ofany shape with the two-node shape � �! � onsists ofthe ylinder, with the two opies of shape, and eah twoof their orresponding nodes onneted by an edge. Aprodut with the three-node shape � �! � �! � on-sists of three opies, similarly onneted.In general, the produt of any two shapes shapeBand shapeC an be envisaged by putting a opy Sn ofshapeB at eah node n of shapeC , and then expanding

eah edge m u! n of shapeC into a ylinder from Smto Sn, i.e. a set of parallel edges, onneting the or-responding nodes. The initial node is the pair of theinitial nodes of shapeB and shapeC , whereas the �nalnodes are the pairs of �nal nodes.In the resulting shape shapeB � shapeC , eah edgeeither omes from a opy of shapeB plaed on a nodeof shapeC , or from an edge of shapeC opied to onnettwo partiular opies of a node of shapeB ; so it is eitherin the form hnode of shapeC ; edge of shapeBi, or in theform hnode of shapeB ; edge of shapeCi. A moment ofthought shows that eah path through shapeB�shapeCorresponds to a shu�e of a path through shapeB , and apath through shapeC ; and that every suh path omesabout as a unique path in shapeB � shapeC . In thissense, shapeB � shapeC is the parallel omposition ofshapeB and shapeC .A pullbak extrats a part of suh produt, iden-ti�ed by a pair of shape morphisms shapeB �!shapeA � shapeC . Sine the initial node must bepreserved, the initial node of the produt will surely beontained in the pullbak. The set of �nal nodes maybe empty in general.For eah pair of nodes hi; ji, ontained in the pull-bak shapeD as the node k, the orresponding statedesription is onstruted as the pushout stadD(k) ofstadB(i) and stadC(j) on the above diagram. As a the-ory, this state desription may be inonsistent. Indeed,if B and C are not independent, but have a shared partA, their parallel omposition may be globally inon-sistent, in the sense that speD may be inonsistent;or some of the pairs of states that may ome aboutin shu�ing their omputation paths may be inonsis-tent, whih makes suh paths omputationally impos-sible. Inferene tools an be used to eliminate inon-sistent/unreahable stads from the olimit espe.Despite the seeming omplexity and mathemati-al depth in the desription of the olimit, the atualomputation is relatively simple. There are just threesteps:� pullbak of shapes;� pushout of spes; (the guards an be diretlyomputed at this point)� the pushout extensions of stads and steps.The �rst two steps are simple and well known. Thethird one amounts to omputing a pushout of theoriesfor eah stad, and using the universality of eah suhpushout to generate the steps from it { Epoxi's olimit

algorithm returns both the oone and a generator oftranslations that witness the universality of the apex.6 Composition ExampleThe following example illustrates the omposition ofespes in the ontext of bank aount transations. Anespe for an aount deposit and an espe for an a-ount withdrawal are omposed to form an espe thatsimultaneously withdraws from one aount and de-posits in another. The example also indiates how es-pes an model some aspets of objet-oriented pro-gramming. Spei�ally, lasses are modeled as spes,and objets are lasses with state. Multiple inheritaneomes for free. Methods an be partially spei�ed andre�ned but annot be overridden.espe Aount_lass isspesort Aountop name : Aount -> Stringop balane : Aount -> Intend-speend-espeespe Aount_instane isimport Aount_lassspe;; these vars an only be hanged externallyvar ext self : Aountvar ext d,n : Intend-speprog;; stads an be parameterizedstad Create[self℄ init[person℄ isaxiom name(self) = personaxiom balane(self) = 0end-stadstad Aount[self,x℄ isaxiom balane(self) = xend-stadstep Deposit[self,d℄: Create[self℄ -> Aount[self,d℄balane(self) := dend-step

step Change[self,n℄: Aount[self,x℄-> Aount[self,x+n℄balane(self) := balane(self) + nend-stepend-progend-espeIn order to model transfer from one aount to theother, we an re�ne the ommon part of the two es-pes representing instanes, and extend it beyond thelass template, to extrat the suitable transitions. Thepushout of the two imports will reate joint instantia-tion of pairs of aounts, with the parallel hanges ofboth of them together.espe Share_trans isimport Aount_lassspevar ext n : Intend-speprogstep Change[self,n℄: Aount[self,x℄-> Aount[self,x+n℄balane(self) |-> balane(self) + nend-stepend-progend-esperefinement Send: Share_trans -> Aount_instane isspemapn |-> -nend-spemapend-refinementrefinement Reeive: Share_trans -> Aount_instanespemapn |-> nend-spemapend-refinement

The two re�nements, Send and Reeive, speifythat the amount withdrawn is the same as the amountdeposited. The pushout of Send and Reeive, all underthe import of Aount_lass is isomorphi to:espe Transfer is import Aount_lassspevar ext a, b : Aountvar ext da, db, n : Intend-speprogstad Create[a,b℄init[person_a,person_b℄ isname(a) = person_aname(b) = person_bbalane(a) = 0balane(b) = 0end-stadstad Aount[a,b,x,y℄ isbalane(a) = xbalane(b) = yend-stadstep Deposit[a,b,da,db℄: Create[a,b℄-> Aount[a,b,da,db℄balane(a) := balane(a) + dabalane(b) := balane(b) + dbend-stepstep Change[a,b,n℄: Aount[a,b,x,y℄-> Aount[a,b,x-n,y+n℄balane(a) := balane(a) - nbalane(b) := balane(b) + nend-stepend-progend-espeTransitions are essentially guarded rewrites, andthe transitions of the omposed espe are superposi-tions of the transitions of the onstituent mahines, asnoted by Fiadeiro [5℄ and others.Although trivial, this example shows how thepushout of espes omposes behaviors in parallel: the

transfer from one Aount_instane to another oneboils down to a parallel omposition of subtratingfrom one aount, expressed by Send, and adding tothe other, aptured by the re�nement Reeive.7 Conluding RemarksEpoxi builds on onepts from Speware [11℄, overom-ing its bias towards generating funtional ode by sup-porting behavioral spei�ations and generation of im-perative ode. Epoxi also builds on previous e�orts tomodel behavior logially (e.g. [4, 6℄) by de�ning a for-mal notion of omposition (via olimit) and re�nement(via morphisms). Epoxi represents an advane on pre-vious re�nement methods, suh as VDM and B, in avariety of ways. The ategorial foundations supportontrolled sharing of substruture, a uniform approahto datatype re�nement, and greater automated supportfor omposition and re�nement.We are working to extend the espe formalism inseveral diretions. First, espes naturally support theassertion of preonditions, invariants, postonditions,and safety onstraints in general. However, stating live-ness and fairness onstraints is more diÆult. Seond,while a diagram-like notation is onvenient for somesituations, programming language notations extendedwith assertions may be better for other situations. Itseems possible to translate from the latter bak into thespe-and-translation setting for the purposes of om-position and re�nement. Third, in systems design itis often neessary to speify and reason about timingproperties. Consequently, we are extending espes withfeatures of timed automata [1℄.In the full version of this paper [9℄, we show howespes support an arhitetural approah to systemdesign. Arhitetures an be formally represented asparameterized espes where the parameter espes arethe interfaes for omponents and onnetors. The in-stantiation of omponents into the arhiteture is per-formed by re�ning the interfae espes to the ompo-nent espes and taking the olimit. The body of thearhiteture espe haraterizes the system-level stru-ture and invariants.Aknowledgments: This work was supported by

DARPA and the Air Fore Researh Lab in Rome, NYunder Contrat F30602-00-C-0209. Thanks to Alessan-dro Coglio for omments on this paper.Referenes[1℄ Alur, R., and Dill, D. A theory of timed automata.Theoretial Computer Siene 126 (1994), 183{235.[2℄ Barr, M., and Wells, C. Category Theory for Com-puting Siene. Prentie-Hall, Englewood Cli�s, NJ,1990.[3℄ Errington, L. Notes on diagrams and state. Teh.rep., Kestrel Institute, 2000.[4℄ Gurevih, Y. Evolving algebra 1993: Lipari guide.In Spei�ation and Validation Methods, E. Boerger,Ed. Oxford University Press, 1995, pp. 9{36.[5℄ J.Fiadeiro, A.Lopes, and M.Wermelinger. Amathematial semantis for arhitetural onnetors.Teh. rep., University of Lisbon, Campo Grande, Por-tugal, 2001.[6℄ Manna, Z., and Pnueli, A. The Temporal Logiof Reative and Conurrent Systems. Springer-Verlag,New York, 1992.[7℄ Pavlovi, D. Semantis of �rst order paramet-ri spei�ations. In Formal Methods '99 (1999),J. Woodok and J. Wing, Eds., vol. 1708 of LetureNotes in Computer Siene, Springer Verlag, pp. 155{172.[8℄ Pavlovi, D. Epoxi. Teh. rep., Kestrel Institute,Marh 2001.[9℄ Pavlovi, D., and Smith, D. Composition andre�nement of behavioral spei�ations. Teh. rep.,Kestrel Institute, September 2001.[10℄ Shaw, M., and Garlan, D. Software Arhiteture:Perspetives on an Emerging Disipline. Prentie-Hall,NJ, 1996.[11℄ Srinivas, Y. V., and J�ullig, R. Speware: Formalsupport for omposing software. In Proeedings of theConferene on Mathematis of Program Constrution,B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin,1995, pp. 399{422.

