
Composition and Re�nement of Behavioral Spe
i�
ationsDusko Pavlovi
 and Douglas R. SmithKestrel Institute3260 Hillview AvenuePalo Alto, California 94304 USAAbstra
tThis paper presents a me
hanizable framework forspe
ifying, developing, and reasoning about
omplexsystems. The framework
ombines features from alge-brai
 spe
i�
ations, abstra
t state ma
hines, and re-�nement
al
ulus, all
ou
hed in a
ategori
al setting.In parti
ular, we show how to extend algebrai
 spe
-i�
ations to evolving spe
i�
ations (espe
s) in su
h away that
omposition and re�nement operations ex-tend to
apture the dynami
s of evolving, adaptive,and self-adaptive software development, while remain-ing eÆ
iently
omputable. The framework is partiallyimplemented in the Epoxi system.1 Introdu
tionHow
an we make the
onstru
tion of
omplex systemseasier and more reliable? To get a handle on the
om-plexity, many resear
hers and engineers advo
ate anar
hite
tural approa
h to system design: a system istreated as a
omposition of
omponents together withthe
onne
tors that mediate their intera
tion (e.g. see[10℄). Sometimes however, the goal of having a
lear,simple ar
hite
ture is at odds with performan
e goalsfor the system. A way out of this dilemma is to work to-ward a framework that allows the
omposition of
om-ponents and
onne
tors in a high-level ar
hite
tural de-sign, followed by the re�nement of the design to
ode.The re�nement pro
ess may break down
omponentand
onne
tor boundaries to optimize system perfor-man
e, as well as introdu
ing lower-level design de
i-sions (su
h as subsystem ar
hite
tures, algorithms, anddata stru
tures).This paper introdu
es a formal framework,
alledevolving spe
i�
ations (or simply espe
s), that supportsthe spe
i�
ation and development of
omplex systems.Espe
s provide the means for expli
itly modeling thelogi
al stru
ture and behavior of systems. The frame-work supports pre
ise, automatable operations for the
omposition of espe
s and their re�nement. The es-pe
 framework is partially implemented in the Epoxi

system.Espe
s grew out of higher-order algebrai
 spe
i�-
ations as implemented in Spe
ware [11℄, the evolv-ing algebras of Gurevi
h (aka abstra
t state ma
hines)[4℄, as well as the
lassi
al axiomati
 semanti
s ofFloyd/Hoare/Dijkstra. Espe
s go beyond all three, notonly allowing the
apture of logi
al stru
ture and be-havior, but also the
omposition of systems and theirre�nement to
ode. Of
ourse the
omposition andre�nement operations are meaning-preserving, so thatany
ode produ
ed by means of
omposition and re-�nement is guaranteed to be
onsistent with the initialespe
s.The paper is stru
tured straightforwardly. We �rstdis
uss how to extend logi
al spe
i�
ations to modelbehavior, and then de�ne espe
s and how to re�neand
ompose them formally. These
on
epts are illus-trated by simple examples. This paper presumes someknowledge of basi

ategory theory (see [2, 11℄ for rel-evant ba
kground). More details about espe
s may befound in [8℄. Related approa
hes to providing
ategor-i
al foundations for spe
ifying,
omposing and re�ningbehaviors may be found in [3, 5℄.2 From Logi
al Theories toState Ma
hines/BehaviorsEPOXI is made of two basi
 building blo
ks: theoriesand translations (also known as theory morphisms).� A theory formalizes, in predi
ate logi
, what isknown about a domain, or an artifa
t in general.A theory is
omprised of a language and a subsetof the language
alled theorems.� A translation is a morphism between theories:it maps the language (signature) of one theoryinto the terms of another one, while preservingtheir meaning and validity: type stru
ture is pre-served, and the theorems are mapped to theo-rems. A translation is presented by a map from

the symbols in one theory to expressions in an-other. The map is applied re
ursively to translateexpressions.On this foundation we
an formally model statema
hines. A state of
omputation
an be viewed as asnapshot of the abstra
t
omputer performing the
om-putation. A rudimentary
omputer
an be viewed asa set of stores, with an abstra
t me
hanism rewritingthe stored values. The rewrites are the
omputationsteps, or transitions. As in many logi
al formalisms forbehavior (
f. [4, 6℄, we treat states as (stati
, mathe-mati
al)models of a global theory thyA, and transitionsas �nite
hanges to the
omponents of a state/model.For example, an array is represented as a �nite fun
-tion, whose value may vary over the possible models.A transition
ould
orrespond to an assignment that
hanged the array/�nite-fun
tion. The
omputation ofa program spe
i�ed by thyA, evolving from state tostate,
an be envisioned as \jumping" from model tomodel, in Mod(thyA).To see the
onne
tion between theories and trans-lations on one hand, and states and transitions on theother,
onsider the
orre
tness of an assignment state-ment relative to a pre
ondition P and a post
onditionQ; i.e. a Hoare triple P fx := eg Q. If we
onsiderthe initial and �nal states as
hara
terized by theoriesthypre and thypost with theorems P and Q respe
tively,then the triple is valid i� Q[e=x℄ is a theorem in thypre.That is, the triple is valid i� the symbol map f x 7! egindu
es a translation from thypost to thypre. Note thatthe translation goes in the opposite dire
tion from the

state transition.In pra
ti
e however, one usually deals with ab-stra
t states rather than individual states/models. Inreasoning about programs, we are typi
ally interestedin states that satisfy
ertain properties, so we use spe
-i�
ations as general state des
riptions, and pass frommodels to sets of models that are spe
i�ed by exten-sions of the global spe
.The basi
 idea of espe
s is to use spe
i�
ations (�-nite presentations of a theory) as state des
riptions,and to use translations to represent abstra
t transitionsbetween state des
riptions.The spe
i�
ation of ea
h state des
ription
orre-sponds to its lo
al stru
ture and properties/invariants.The spe
i�
ation
ommon to all state des
riptions spe
-i�es the global stru
ture and invariants of the system.Any stru
ture that is
ommon to all states that a
om-putation
an rea
h is formalized as a (global) spe
i�-
ation; the
ommon stru
ture in
ludes variables andtheir sorts, as well as axioms (global invariants) andoperations (global
onstants).ExampleLet us see a simple program in this framework. Here,stad denotes a state des
ription, step a transition.The espe
 GCD-0 de�nes the
on
ept of the greatest-
ommon-divisor of two natural numbers and the statema
hine spe
i�es the required behavior of a greatest-
ommon-divisor
omputation.espe
 GCD-base isspe
 ;; the keyword spe
 en
loses the logi
al spe
ifi
ation
onst X-in,Y-in : Pos ;; X-in and Y-in are
onstant positive integersvar Z : Pos ;; Z is a positive integer that varies over statesop g
d : Pos, Pos -> Posaxiom g
d-spe
 is ;; this axiom spe
ifies the g
d problemg
d(x,y) = z => (divides(z,x) & divides(z,y)& forall(w:Pos)(divides(w,x) & divides(w,y) => w <= z))end-spe
prog ;; the keyword prog en
loses the state ma
hine (empty in this
ase)end-progend-espe

espe
 GCD-0 isimport GCD-basespe
 ;; the spe
 extends the spe
 from GCD-base with a theoremthm g
d(x,x) = x ;; this theorem follows from axiom g
d-spe
end-spe
prog ;; the keyword prog en
loses the state ma
hinestad One init[X-in,Y-in℄ is ;; the initial state re
eives X-in and Y-inend-stadstad Two fin[Z℄ is ;; this stad extends the global spe
 with a lo
al axiomaxiom Z = g
d(X-in,Y-in)end-stadstep Out : One -> Two is ;; transition from stad One to stad TwoZ |-> g
d(X-in,Y-in)end-stepend-progend-espe
Note that the steps are expressed in terms of symboltranslations. Be
ause of the
onne
tion between trans-lations and transitions, we will hen
eforth use assign-ments instead; i.e. write x := e instead of x |-> e.Espe
 GCD-1, below, re�nes GCD-0. The prog ex-presses the
lassi
al GCD algorithm, whi
h might havebeen generated by a design ta
ti
. GCD-1 extends thelogi
al spe
 of GCD-0 with two lo
al variables X and Y.Essentially, the re�nement adds a new stad and twolooping transitions that preserve the key loop invariantof the program: X and Y
hange under the transitions,but always so that their GCD is the same as the GCDof the input values X-in and Y-in.espe
 GCD-1 isimport GCD-basespe
 ;; two new vars used to
ompute GCDvar X,Y : Posend-spe
progstad One init[X-in,Y-in℄ isend-stadstad Loop isaxiom g
d(X-in,Y-in) = g
d(X,Y)end-stadstad Two fin[Z℄ isaxiom Z = Xaxiom X = Y

axiom Z = g
d(X-in,Y-in)end-stadstep initialize : One -> Loop isX := X-inY := Y-inend-stepstep Loop1 : Loop -> Loop isX>Y -> X := X - Yend-stepstep Loop2 : Loop -> Loop isY>X -> Y := Y - Xend-stepstep Out : Loop -> Two isX=Y -> Z := Xend-stepend-progend-espe
It is straightforward to
he
k that GCD-1 is inter-nally
onsistent; e.g. to show that Loop1
orrespondsto a translation, we must showLoop; X > Y ` g
d(X�in; Y�in) = g
d(X � Y; Y)The
orre
tness
onditions of re�nements is ad-dressed in Se
tion 4.

3 Espe
sThe
on
ept of espe
 is now formally de�ned.De�nition 3.1 A graph s
onsists of two sets edgesand nodes, and two fun
tions, doms and
ods fromedges to nodes.A shape is a graph s, whi
h is moreover� re
exive, in the sense that there is a fun
tionids : nodes �! edges, whi
h assigns a distin-guished loop to ea
h node;� distinguished initial node i, and a set O of �nalnodes o;Together with the morphisms preserving all displayedstru
ture, shapes form the
ategory Shape.De�nition 3.2 An evolving spe
, or espe
 A
on-sists of� a spe
 spe
A, and� a program progA, presented by{ a shape shapeA;{ a re
exive graph morphismstA : shapeA �! extopAwhere extA is spe
A=Spe
, the
ategory ofextensions of spe
 spe
A;{ a labeling
ond of the edges of shapeA by theformulas in the language of spe
A. That is,stA maps that nodes of shapeA to spe
s inextA, and maps ar
s u : a ! b to trans-lations in extopA : stA(u) : stA(a) stA(b).Furthemore, stA maps self-loops in shapeAto identity translations.It is often
onvenient to also display the input andoutput interfa
es, presented as parameter subtheories1Xi,!stad(i) and Xo,!stad(o), of the initial and the�nal states, respe
tively.Notation and terminology. The input and the out-put interfa
es are usually written stad hnamei init[Xi℄and stad hnamei �n[Xo℄.If n is a node of shapeA, the
odomain of stA(n)is written as stadA(n). If u : m ! n is an edge ofshapeA, its image stA(u) is usually written as stepA(u).In summary,

� stad assigns to ea
h shape-node n a state de-s
ription stad(n), whi
h
omes with a translationstA(n) : spe
A �! stad(n);� step assigns to ea
h shape-edge u : m! n a step(or transition) step(u) : stad(m) stad(n), keep-ing S invariant, in the sense that the followingdiagram
ommutes. spe
Ast(m)
yyttttttttt st(n)

$$JJJJJJJJJstad(m) stad(n)step(u)oo4 Re�nementsWe now de�ne the
on
ept of a re�nement (or mor-phism) between two espe
s. A
hara
teristi
 of espe
re�nements is that logi
al stru
ture and behavior re-�ne
ontravariantly, in opposite dire
tions. If A re�nesto B, then the spe
 of A re�nes to the spe
 of B by atranslation, but the prog of B maps into the prog ofA, simulating it. So a re�nement preserves the logi
alstru
ture of A in B and preserves the behavior of B inA.De�nition 4.1 Given espe
s A and B, a re�nementf : A �! B
onsists of:Af
��

= hspe
A;fspe

��

shapeA stA // extopA i
�#
fstad???

???B = hspe
B ; shapeB stB //

fshapeOO extopB if�spe
OO

� a stru
ture map (or translation) fspe
� a behavior map (or simulation) fprog =hfshape; fstadi, where{ fshape is a re
exive graph morphism, pre-serving the initial and the �nal nodes,{ fstad is spe
A-preserving natural transfor-mation; this naturality and preservationamount to the
ommutativity of Figure 1 forevery v : k ! ` in shapeB (see notes below).1By de�nition, the parameterX � S of a parametri
 spe
i�
ation S[X℄
an be freely instantiated, without
ausing any in
onsisten
iesin the parameterized spe
i�
ation [7℄. This also
aptures the idea of interfa
e.

stadA(fshape(k)) ^
ondA (fshape(v)) stadA(fshape(`))stepA(fshape(v))oo spe
AstA(fshape(k))jjVVVVVVVVVVVVVVVVVVVV
stA(fshape(`))66lllllllllllllfspe

��spe
BstB(k)
tthhhhhhhhhhhhhhhhhhhh stB(`)

((RRRRRRRRRRRRRstadB(k) ^
ondB(v)��

fstad(k) stadB(`)��

fstad(`)
stepB(v)ooFigure 1: Naturality Condition of a Re�nement� Together, fspe
 and fprog must also satisfy theguard
ondition: for every edge v : k ! ` inshapeB and edge u = fshape(v) in shapeAstadB(k) `
ondB(v) =) fspe
(
ondA(u))� The inverse-image fun
tor f�spe
 a
ts on the
ate-gory of extensions: f�spe
(e) = e Æ fspe
.Clearly, espe
s and re�nements form a
ategory, whi
hwe shall denote ESpe
.Intuition. The last diagram tells that the
omponentsof fstad
oherently extend fspe
 from the global spe
sspe
A and spe
B to their extensions stadA and stadB .Just like spe
B re�nes spe
A be
ause it proves all for-mulas in the image fspe
[spe
A℄, ea
h stadB(n) re�nesstadA(fshape(n)) be
ause it proves all formulas in theimage fstad(n)[stadA(fshape(n))℄. The stru
tural re�ne-ment is thus extended from fspe
 : spe
A �! spe
Bto fstad : stadA �! stadB . Its naturality ensures thatea
h transition stepB(v) of B extends the transitionstepA(fshape(v)) of A.The guard
ondition ensures that every behavior ofB maps to a behavior of A. There are stronger versionsof the guard
ondition that also ensure that B simu-lates all of A's behaviors, and others that eliminatenondeterminism. Rather than
ommit to one su
h def-inition, we use several, but the guard
ondition aboveis suÆ
ient for the purposes of this paper.Let us return to the example in Se
tion 2. In there�nement from GCD-0 to GCD-1, fspe
 is a simple in-
lusion, and fshape is given by the stad mapOne 7! OneLoop 7! OneTwo 7! Two

and the step mapinitialize 7! idOneLoop1 7! idOneLoop2 7! idOneOut 7! OutThree of the steps map to the identity step onstad One in GCD-0 be
ause they only
hange the lo-
al variables X and Y,
orresponding to identity stepsin GCD-0 (sometimes
alled stuttering steps). Che
k-ing the
omponents of the natural transformation isstraightforward { the proof obligations in
lude showingthat fstad(k) is a translation for all nodes k in shapeA;e.g. that the axioms of stad One in GCD-0 translate totheorems in stad Loop in GCD-1. Che
king the guard
ondition is also straightforward; e.g. for step Loop1 inGCD-1, the guard
ondition instantiates toLoop ` X > Y =) truewhere the
onsequent is the guard on step idOne inGCD-0.5 ColimitsComposition of espe
s is
arried out by the
olimit op-eration. Colimits in ESpe
 are
onstru
ted from the
olimits in Spe
, the limits in Shape, plus some wiringto
onne
t them in Cat. First of all, re
all that all
olimits
an be derived from the initial obje
t and thepushouts. Of
ourse, the initial espe

onsists of theempty spe
, and a one-state-one-step program (withthe state represented by the empty spe
).To des
ribe the pushout of espe
s, suppose we are

given a span of espe
sspe
Afspe

ttjjjjjjjj gspe

++VVVVVVVVVVspe
B spe
CshapeAstA
��

shapeB fshape 55kkkkkkstB
��

shapeCgshapejjUUUUUUUUU stC
��

fstad
��

 gstad

�!
;;

;;
;;

;;extopAextopB f�spe
 55llllllll extopCg�spe
jjUUUUUUUUUUUTo
ompute the pushout, we �rst
ompute the
orre-sponding pushout of spe
s and the pullba
k of shapes.spe
Afspe

ssggggggggggg gspe

,,ZZZZZZZZZZZZZZZZZZZZZspe
B sspe
 ,,ZZZZZZZZZZZZZZZZZZZZZ spe
Ctspe
ssgggggggggggspe
DshapeAshapeB fshape 44hhhhhhhhhh shapeCgshapellYYYYYYYYYYYYYYYYYYYYshapeD tshape 44hhhhhhhhhhsshapellYYYYYYYYYYYYYYYYYYYYIt is easy to see that M : Spe
op �! Cat maps theupper pushout to the pullba
k at the bottom of theindu
ed
ube. shapeAstA
��

shapeBfshape 99ssssstB
��

shapeCgshapejjUUUUUUUU stC
��

shapeD tshape99rrrrsshapejjUUUUUUUUfstad
�� �
����
� gstad

��
&&
&
&&
&extopAextopB f�spe
99tttt extopCg�spe
jjTTTTTTTTTTextopD t�spe
99tttts�spe
iiTTTTTTTTTTIf fstad and gstad were identities, i.e. if the two ba
kfa
es of the
ube were
ommutative, the fa
t thatthe bottom fa
e is a pullba
k would indu
e a fun
torstD : shapeD �! (spe
D=Spe
)op. Sin
e they are not,

this fun
tor must be
onstru
ted taking fstad and gstadinto a

ount. The image stD(k) of a node k of shapeDis now obtained as the unique arrow from the pushoutat the top to the pushout at the bottom of the following
ube. spe
AstA(`)
��

spe
B tt
fspe
 iiiiiiiiistB(i)

��

spe
C,,
gspe
YYYYYYYYYYYYYYYYYYY stC(j)

��

spe
DstD(k)
���
�
�
�
�
�
�
�

tt tspe
 iiiiiiiii,,sspe
YYYYYYYYYYYYYYYYYYYstadA(`)stadB(i) uu
fstad(i) jjjjjj stadC(j),,

gstad(j)ZZZZZZZZZZ

WWWWWWstadD(k) uu tstad(k)jjjjjj,,sstad(k)YYYYYYYYYYYYYYYYSin
e shapeD is the pullba
k of fshape and gshape, thenode k
orresponds to a pair hi; ji of the nodes fromshapeB and shapeC , identi�ed in shapeA as the node` = fshape(i) = gshape(j). Of
ourse, i = sshape(k) andj = tshape(k).This
onstru
tion gives the node part stadD ofstD : shapeD �! extopD , as well as the
omponents ofsstad and tstad. The arrow part stepD is indu
ed by thefa
t that the bottom of the
ube is a pushout, using thenaturality of fstad and gstad. This also yields the natu-rality of sstad and tstad. Finally we
onstru
t the guardsfor the edges of shapeD. Given an edge w : k ! k0 ofshapeD de�ne
ondD(w) = sspe
(
ondB(sshape(w)))^ tspe
(
ondC(tshape(w)))A proof that this
onstru
tion yields an espe
 with thedesired universal properties may be found in [8℄.Explanation. The pushout of spe
s is
lear enough:the languages get joined together, and identi�ed alongthe
ommon part. The pullba
k of shapes produ
esthe parallel
omposition of the behaviors they present.This is parti
ularly easy to see for produ
ts, i.e. pull-ba
ks over the �nal espe
. For example, a produ
t ofany shape with the two-node shape � �! �
onsists ofthe
ylinder, with the two
opies of shape, and ea
h twoof their
orresponding nodes
onne
ted by an edge. Aprodu
t with the three-node shape � �! � �! �
on-sists of three
opies, similarly
onne
ted.In general, the produ
t of any two shapes shapeBand shapeC
an be envisaged by putting a
opy Sn ofshapeB at ea
h node n of shapeC , and then expanding

ea
h edge m u! n of shapeC into a
ylinder from Smto Sn, i.e. a set of parallel edges,
onne
ting the
or-responding nodes. The initial node is the pair of theinitial nodes of shapeB and shapeC , whereas the �nalnodes are the pairs of �nal nodes.In the resulting shape shapeB � shapeC , ea
h edgeeither
omes from a
opy of shapeB pla
ed on a nodeof shapeC , or from an edge of shapeC
opied to
onne
ttwo parti
ular
opies of a node of shapeB ; so it is eitherin the form hnode of shapeC ; edge of shapeBi, or in theform hnode of shapeB ; edge of shapeCi. A moment ofthought shows that ea
h path through shapeB�shapeC
orresponds to a shu�e of a path through shapeB , and apath through shapeC ; and that every su
h path
omesabout as a unique path in shapeB � shapeC . In thissense, shapeB � shapeC is the parallel
omposition ofshapeB and shapeC .A pullba
k extra
ts a part of su
h produ
t, iden-ti�ed by a pair of shape morphisms shapeB �!shapeA � shapeC . Sin
e the initial node must bepreserved, the initial node of the produ
t will surely be
ontained in the pullba
k. The set of �nal nodes maybe empty in general.For ea
h pair of nodes hi; ji,
ontained in the pull-ba
k shapeD as the node k, the
orresponding statedes
ription is
onstru
ted as the pushout stadD(k) ofstadB(i) and stadC(j) on the above diagram. As a the-ory, this state des
ription may be in
onsistent. Indeed,if B and C are not independent, but have a shared partA, their parallel
omposition may be globally in
on-sistent, in the sense that spe
D may be in
onsistent;or some of the pairs of states that may
ome aboutin shu�ing their
omputation paths may be in
onsis-tent, whi
h makes su
h paths
omputationally impos-sible. Inferen
e tools
an be used to eliminate in
on-sistent/unrea
hable stads from the
olimit espe
.Despite the seeming
omplexity and mathemati-
al depth in the des
ription of the
olimit, the a
tual
omputation is relatively simple. There are just threesteps:� pullba
k of shapes;� pushout of spe
s; (the guards
an be dire
tly
omputed at this point)� the pushout extensions of stads and steps.The �rst two steps are simple and well known. Thethird one amounts to
omputing a pushout of theoriesfor ea
h stad, and using the universality of ea
h su
hpushout to generate the steps from it { Epoxi's
olimit

algorithm returns both the
o
one and a generator oftranslations that witness the universality of the apex.6 Composition ExampleThe following example illustrates the
omposition ofespe
s in the
ontext of bank a

ount transa
tions. Anespe
 for an a

ount deposit and an espe
 for an a
-
ount withdrawal are
omposed to form an espe
 thatsimultaneously withdraws from one a

ount and de-posits in another. The example also indi
ates how es-pe
s
an model some aspe
ts of obje
t-oriented pro-gramming. Spe
i�
ally,
lasses are modeled as spe
s,and obje
ts are
lasses with state. Multiple inheritan
e
omes for free. Methods
an be partially spe
i�ed andre�ned but
annot be overridden.espe
 A

ount_
lass isspe
sort A

ountop name : A

ount -> Stringop balan
e : A

ount -> Intend-spe
end-espe
espe
 A

ount_instan
e isimport A

ount_
lassspe
;; these vars
an only be
hanged externallyvar ext self : A

ountvar ext d,n : Intend-spe
prog;; stads
an be parameterizedstad Create[self℄ init[person℄ isaxiom name(self) = personaxiom balan
e(self) = 0end-stadstad A

ount[self,x℄ isaxiom balan
e(self) = xend-stadstep Deposit[self,d℄: Create[self℄ -> A

ount[self,d℄balan
e(self) := dend-step

step Change[self,n℄: A

ount[self,x℄-> A

ount[self,x+n℄balan
e(self) := balan
e(self) + nend-stepend-progend-espe
In order to model transfer from one a

ount to theother, we
an re�ne the
ommon part of the two es-pe
s representing instan
es, and extend it beyond the
lass template, to extra
t the suitable transitions. Thepushout of the two imports will
reate joint instantia-tion of pairs of a

ounts, with the parallel
hanges ofboth of them together.espe
 Share_trans isimport A

ount_
lassspe
var ext n : Intend-spe
progstep Change[self,n℄: A

ount[self,x℄-> A

ount[self,x+n℄balan
e(self) |-> balan
e(self) + nend-stepend-progend-espe
refinement Send: Share_trans -> A

ount_instan
e isspe
mapn |-> -nend-spe
mapend-refinementrefinement Re
eive: Share_trans -> A

ount_instan
espe
mapn |-> nend-spe
mapend-refinement

The two re�nements, Send and Re
eive, spe
ifythat the amount withdrawn is the same as the amountdeposited. The pushout of Send and Re
eive, all underthe import of A

ount_
lass is isomorphi
 to:espe
 Transfer is import A

ount_
lassspe
var ext a, b : A

ountvar ext da, db, n : Intend-spe
progstad Create[a,b℄init[person_a,person_b℄ isname(a) = person_aname(b) = person_bbalan
e(a) = 0balan
e(b) = 0end-stadstad A

ount[a,b,x,y℄ isbalan
e(a) = xbalan
e(b) = yend-stadstep Deposit[a,b,da,db℄: Create[a,b℄-> A

ount[a,b,da,db℄balan
e(a) := balan
e(a) + dabalan
e(b) := balan
e(b) + dbend-stepstep Change[a,b,n℄: A

ount[a,b,x,y℄-> A

ount[a,b,x-n,y+n℄balan
e(a) := balan
e(a) - nbalan
e(b) := balan
e(b) + nend-stepend-progend-espe
Transitions are essentially guarded rewrites, andthe transitions of the
omposed espe
 are superposi-tions of the transitions of the
onstituent ma
hines, asnoted by Fiadeiro [5℄ and others.Although trivial, this example shows how thepushout of espe
s
omposes behaviors in parallel: the

transfer from one A

ount_instan
e to another oneboils down to a parallel
omposition of subtra
tingfrom one a

ount, expressed by Send, and adding tothe other,
aptured by the re�nement Re
eive.7 Con
luding RemarksEpoxi builds on
on
epts from Spe
ware [11℄, over
om-ing its bias towards generating fun
tional
ode by sup-porting behavioral spe
i�
ations and generation of im-perative
ode. Epoxi also builds on previous e�orts tomodel behavior logi
ally (e.g. [4, 6℄) by de�ning a for-mal notion of
omposition (via
olimit) and re�nement(via morphisms). Epoxi represents an advan
e on pre-vious re�nement methods, su
h as VDM and B, in avariety of ways. The
ategori
al foundations support
ontrolled sharing of substru
ture, a uniform approa
hto datatype re�nement, and greater automated supportfor
omposition and re�nement.We are working to extend the espe
 formalism inseveral dire
tions. First, espe
s naturally support theassertion of pre
onditions, invariants, post
onditions,and safety
onstraints in general. However, stating live-ness and fairness
onstraints is more diÆ
ult. Se
ond,while a diagram-like notation is
onvenient for somesituations, programming language notations extendedwith assertions may be better for other situations. Itseems possible to translate from the latter ba
k into thespe
-and-translation setting for the purposes of
om-position and re�nement. Third, in systems design itis often ne
essary to spe
ify and reason about timingproperties. Consequently, we are extending espe
s withfeatures of timed automata [1℄.In the full version of this paper [9℄, we show howespe
s support an ar
hite
tural approa
h to systemdesign. Ar
hite
tures
an be formally represented asparameterized espe
s where the parameter espe
s arethe interfa
es for
omponents and
onne
tors. The in-stantiation of
omponents into the ar
hite
ture is per-formed by re�ning the interfa
e espe
s to the
ompo-nent espe
s and taking the
olimit. The body of thear
hite
ture espe

hara
terizes the system-level stru
-ture and invariants.A
knowledgments: This work was supported by

DARPA and the Air For
e Resear
h Lab in Rome, NYunder Contra
t F30602-00-C-0209. Thanks to Alessan-dro Coglio for
omments on this paper.Referen
es[1℄ Alur, R., and Dill, D. A theory of timed automata.Theoreti
al Computer S
ien
e 126 (1994), 183{235.[2℄ Barr, M., and Wells, C. Category Theory for Com-puting S
ien
e. Prenti
e-Hall, Englewood Cli�s, NJ,1990.[3℄ Errington, L. Notes on diagrams and state. Te
h.rep., Kestrel Institute, 2000.[4℄ Gurevi
h, Y. Evolving algebra 1993: Lipari guide.In Spe
i�
ation and Validation Methods, E. Boerger,Ed. Oxford University Press, 1995, pp. 9{36.[5℄ J.Fiadeiro, A.Lopes, and M.Wermelinger. Amathemati
al semanti
s for ar
hite
tural
onne
tors.Te
h. rep., University of Lisbon, Campo Grande, Por-tugal, 2001.[6℄ Manna, Z., and Pnueli, A. The Temporal Logi
of Rea
tive and Con
urrent Systems. Springer-Verlag,New York, 1992.[7℄ Pavlovi
, D. Semanti
s of �rst order paramet-ri
 spe
i�
ations. In Formal Methods '99 (1999),J. Wood
o
k and J. Wing, Eds., vol. 1708 of Le
tureNotes in Computer S
ien
e, Springer Verlag, pp. 155{172.[8℄ Pavlovi
, D. Epoxi. Te
h. rep., Kestrel Institute,Mar
h 2001.[9℄ Pavlovi
, D., and Smith, D. Composition andre�nement of behavioral spe
i�
ations. Te
h. rep.,Kestrel Institute, September 2001.[10℄ Shaw, M., and Garlan, D. Software Ar
hite
ture:Perspe
tives on an Emerging Dis
ipline. Prenti
e-Hall,NJ, 1996.[11℄ Srinivas, Y. V., and J�ullig, R. Spe
ware: Formalsupport for
omposing software. In Pro
eedings of theConferen
e on Mathemati
s of Program Constru
tion,B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin,1995, pp. 399{422.

