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Abstract

Labelled Markov processes (LMPs) are labelled transition systems in which each
transition has an associated probability. In this paper we present a universal LMP as
the spectrum of a commutative C∗-algebra consisting of formal linear combinations
of labelled trees. This yields a simple trace-tree semantics for LMPs that is fully
abstract with respect to probabilistic bisimilarity. We also consider LMPs with
distinguished entry and exit points as stateful stochastic relations. This allows
us to define a category LMP, with measurable spaces as objects and LMPs as
morphisms. Our main result in this context is to provide a predicate-transformer
duality for LMP that generalises Kozen’s duality for the category SRel of stochastic
relations.
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1 Introduction

Probabilistic models are important for capturing quantitative aspects of pro-
cess behaviour, such as performance and reliability, e.g., the average response
time to a given action, or the probability with which a failure occurs. For
this reason there has been extensive research into adapting the concepts and
results of classical concurrency theory to the probabilistic case. In particular,
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the notion of bisimilarity has been adapted to probabilistic systems [17,9,16],
and its equational theory investigated in [22,4] among many others.

This paper is concerned with the semantics of certain probabilistic labelled
transition systems, called labelled Markov processes (or LMPs) [9,11,7]. These
can be seen as coalgebras of an endofunctor X 7→ M(Act×X) on the category
Mes of measurable spaces, where Act is a set of actions and M(Act×X) is
the space of all subprobability measures on Act × X. The coalgebra homo-
morphisms yield a natural notion of maps between LMPs, called zig-zag maps
in [9].

Our first contribution is to construct a universal LMP. The universal prop-
erty here is finality: we construct an LMP that is final in the category of LMPs
and zig-zag maps. Such a universal LMP has previously been constructed as
the solution of a domain equation [11,7]. Here we exploit Stone duality for
real commutative C∗-algebras to characterise the universal LMP as the spec-
trum of a C∗-algebra generated by a class of trace trees. These trace trees are
closely related to the tests introduced by Larsen and Skou [17] in their paper
characterising bisimilarity as a testing equivalence. A trace tree is essentially
a finite Act-labelled tree, that is, a trace with branching. Adding algebraic
and order-theoretic structure transforms the set of trace trees into a pre-
ordered, commutative ring, which can then be completed relative to a natural
semi-norm into a commutative C∗-algebra. The spectrum of this C∗-algebra
forms the state space of the universal LMP. An important consequence of this
characterisation—one of our main results—is that two LMPs are bisimilar iff
they have the same probability of performing each trace tree.

A second contribution of this paper involves generalising the notion of
labelled Markov process to accommodate interfaces. We do this by specifying
for each LMP a measurable space of entry points and a measurable space of exit
points. A similar extension of labelled transition systems occurs in the work
of Bloom and Esik [6] in the context of iteration theories, and in the notion
of charts, introduced by Milner [18]. Thus we obtain a category LMP whose
objects are measurable spaces and in which a morphism X → Y is an LMP
with entry points X and exit points Y . (This should not be confused with the
category of LMPs and zig-zag maps, in which LMPs are the objects.) LMP
includes the category SRel of stochastic relations [3,20] as a subcategory:
stochastic relations can be seen as stateless LMPs. Our main result in this
context is to characterise the dual of LMP as the co-Kleisli category of certain
comonad in the category of ordered rings.

Our duality for LMP extends Kozen’s [14] duality for SRel. According to
the latter, the dual of a stochastic relation X → Y is a monotone linear map
B(Y ) → B(X), where B(X) denotes the ordered vector space of bounded
real-valued measurable functions on X with the pointwise order. In fact, a
stochastic relation X → Y is a measurable map µ : X →M(Y ), and the dual
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Morphism Dual

SRel X →M(Y ) B(Y )→ B(X)

[monotone linear map]

LMP X + S −→M(Y + (Act× S)) T B(Y )→ B(X)

[monotone ring map]

Fig. 1. Dualities for SRel and LMP.

map µ̂ : B(Y )→ B(X) is defined by µ̂(f)(x) =
∫

Y
f dµx.

Kozen’s duality underlies a predicate-transformer semantics for an imper-
ative programming language with probabilistic choice. In this view predicates
are measurable functions on the set of exit points. However our development
is in the context of interactive processes rather than imperative programs.
Correspondingly, our class of predicates is richer than Kozen’s. Given an
LMP with set of exit points Y , the relevant predicates are trace trees trees
whose leaves are labelled by elements of B(Y ). These trace trees generate a
preordered ring that we call T B(Y ). Then the dual of an LMP S : X → Y is
a monotone ring map T B(Y ) → B(X). We show also that T is a comonad
on the category of preordered rings, so that the dual of an LMP is a map
in the co-Kleisli category of T . We further show that composition of LMPs
corresponds to co-Kleisli composition on the dual side.

The situation is summarised in Figure 1 which shows that the addition of
state to stochastic relations corresponds to adding a comonad on the dual side.
It is also noteworthy that for SRel the dual maps preserve addition in B(Y ),
whereas for LMP the dual maps preserve both addition and multiplication
in T B(Y ). There is no contradiction here; while T B(Y ) is in some sense
generated by B(Y ), only the additive structure of B(Y ) is preserved in T B(Y ).
Thus every monotone additive map B(Y ) → B(X) extends to a monotone
ring map T B(Y ) → B(X). However the multiplicative structure of T B(Y )
plays an important role. Intuitively it reflects the fact that we consider LMPs
modulo bisimilarity, and bisimilarity is a branching-time equivalence.

Simplified versions of the results in this paper were first described in the
extended abstract [19].

2 Labelled Markov Processes

In this section we formally define the class of probabilistic transition systems
that we study in this paper: labelled Markov processes (LMPs). Our notion
of LMP extends that of [9] by specifying sets of entry and exit points. This
extension allows us to define composition of LMPs. The resulting category
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of LMPs includes the category SRel of stochastic relations as a subcategory,
where stochastic relations can be seen as stateless LMPs. The connection with
stochastic relations will be explored in the next section.

Given a measurable space X = (X, ΣX) consisting of a set X and a σ-
field ΣX of subsets of X, we write MX for the set of subprobability mea-
sures on X. For each measurable subset A ⊆ X we have an evaluation
function pA : MX → [0, 1] sending µ to µA. Then MX becomes a mea-
surable space by giving it the smallest σ-field such that all the evaluations
pA are measurable. (In fact, this is the smallest σ-field such that integra-
tion against any measurable function g : X → [0, 1] yields a measurable map∫

g d− : MX → [0, 1].) Next, M is turned into an endofunctor on the cate-
gory Mes of measurable spaces by definingM(f)(µ) = µ◦f−1 for f : X → Y
measurable and µ ∈MX.

Theorem 2.1 (Giry [12]) The functor M : Mes → Mes defines a monad

on Mes; the unit is given by ηX(x) = δx and the multiplication µ :M2 ·
−→M

is given by integration.

Henceforth we assume a fixed finite set Act of actions or events.

Definition 2.2 Given measurable spaces X and Y , a labelled Markov pro-

cess S : X → Y is a pair (S, µ) consisting of a measurable space S and a
measurable map µ : X + S →M(Y + (Act× S)).

We think of X and Y as the interfaces of S, where X is the space of entry
points and Y is the space of exit points, and we think of S as the state space.
Given s ∈ S and a ∈ Act, µs({a} × E) is the probability that the process in
state s makes an a-transition to a measurable set of states E ⊆ S. Similarly
if E ⊆ Y is a measurable set of exit points, then µs(E) is the probability
that state s makes a transition to the set E. Note that µs is a sub-probability
distribution on (Act× S) + Y . We interpret the difference between the total
mass of µs and 1 as the probability of deadlock. We also adopt the notation
µs,a for the subprobability measure on S given by µs,a(E) = µs({a}×E), and
we write µs,ε for the subprobability measure on Y given by µs,ε(E) = µs(E).
Thus transitions to exit points are thought of as ε-transitions.

Next we generalise the notion of zig-zag maps between LMPs [9] to the
case with entry and exit points.

Definition 2.3 Let S,S ′ : X → Y be LMPs, where S = (S, µ) and S ′ =
(S ′, µ′). A function h : S → S ′ between their respective state spaces is a zig-
zag map if the following diagram commutes.
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X + S

idX+h

��

µ
//M(Y + (Act× S))

M(idY +(idAct×h))
��

X + S ′

µ′
//M(Y + (Act× S ′))

The commuting of this diagram is equivalent to the following two condi-
tions, where g is the function idX + h:

• µs,a(h
−1(E)) = µ′

g(s),a(E) for all s ∈ X+S, measurable E ⊆ S ′ and a ∈ Act.

• µs,ε(E) = µ′

g(s),ε(E) for all s ∈ X + S and measurable E ⊆ Y .

Note that we only define zig-zag maps between LMPs with the same sets
of entry points and exit points (see below).

X

S′

77

S

''

⇓ h Y

This suggests that zig-zag maps could be seen as 2-cells in a bicategory
whose 0-cells are measurable spaces and whose 1-cells are LMPs. However
we do not pursue this idea; rather we use zig-zag maps to define a notion
of bisimulation equivalence between LMPs, and we focus on the resulting
(genuine) category of measurable spaces and equivalence classes of LMPs.

2.1 Probabilistic Bisimulation

Probabilistic bisimulation was introduced by Larsen and Skou [17] as a prob-
abilistic analog of strong bisimulation for labelled transition systems. They
defined a probabilistic bisimulation on an LMP (with countable state space) to
be an equivalence relation on the state space such that equivalent states have
the same probability of transitioning to each equivalence class under a given
action. This relational definition was extended to LMPs with non-discrete
state spaces in [9]. However, in this paper it will be more technically conve-
nient to work with an alternative formulation of a bisimulation as a cospan of
zig-zag maps [8].

Definition 2.4 Let S,S ′ : X → Y be LMPs. We say that S and S ′ are
bisimilar if there exists a third LMP S ′′ : X → Y and zig-zag maps h : S → S ′′

and g : S ′ → S ′′.

Note that the entry points of S and S ′ are identified by g and h. 3 Intu-
itively, Definition 2.4 captures the idea that S and S ′ are indistinguishable at
each entry point x ∈ X.

3 Strictly speaking we should say that the entry points of S and S′ are identified in S′′ by
idX + g and idX + h.
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3 LMPs as Generalised Stochastic Relations

In this section we define the category SRel of stochastic relations and its state-
ful generalisation the category LMP of LMPs. We also summarise Kozen’s
duality for SRel in anticipation of its later generalisation to LMP.

Definition 3.1 The category SRel of stochastic relations is the Kleisli cate-
gory of the Giry monad. Thus a stochastic relation f : X → Y is a measurable
function f : X →M(Y ).

The composite of stochastic relations f : X → Y and g : Y → Z is given
by

(g ◦ f)(x)(C) =

∫

Y

g(·)(C) dfx ,

where x ∈ X, C ∈ ΣZ , and fx denotes the measure f(x) on Y . Identities in
SRel are given by point measures: idX : X → X is defined by idX(x) = δx

where

δx(A) =





1, x ∈ A

0, x 6∈ A.

Note that coproducts lift from Mes to SRel. In particular, the binary
coproduct of X and Y in SRel is the disjoint sum X + Y , with injections
inl : X → X + Y and inr : Y → X + Y given by inl(x) = δx and inr(y) = δy.

Next we describe Kozen’s [14] duality between stochastic relations and
linear maps.

Definition 3.2 The category SPT of stochastic predicate transform-

ers has as objects measurable spaces. To such a measurable space X we can
associate the ordered vector space B(X) of bounded, real-valued measurable
functions on X, endowed with the pointwise order. A morphism X → Y
in SPT is then a linear, monotone function ϕ : B(X) → B(Y ) satisfying
ϕ(1) ≤ 1.

Theorem 3.3 (Kozen [14]) The category SRel is dually equivalent to the
category SPT under the correspondence that associates to h : X → Y in SRel

the mapping from ϕ : B(Y )→ B(X), where

ϕ(f)(x) =

∫

Y

f dhx ,

and to ϕ : B(Y )→ B(X) the SRel morphism h : X → Y , where

h(x)(A) = ϕ(χA)(x) .

As we shall see later, our main theorem gives a stateful generalisation of
this duality.
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3.1 The Category LMP

In this subsection we extend SRel to a category LMP whose objects are
measurable spaces and whose morphisms are (bisimulation-equivalence classes
of) LMPs. Given measurable spaces X and Y , an LMP S : X → Y represents
a morphism from X to Y in LMP; another LMP S ′ : X → Y represents
the same morphism iff S and S ′ are bisimilar. Comparing Definitions 2.2 and
3.1, we observe that a stochastic relation X → Y can be regarded as LMP
with empty state space. It is also clear from Definition 2.4 that two stochastic
relations X → Y are bisimilar qua LMPs iff they are identical. Thus stochastic
relations are morphisms in LMP.

Next we define composition in LMP. We define composition of LMPs
(rather than of equivalence classes) following the composition-as-integration
pattern for stochastic relations. Proposition 3.4 then shows that this lifts to
a well-defined composition in LMP. Let S : X → Y and S ′ : Y → Z be LMPs
with S = (S, µ) and S ′ = (S ′, µ′). Intuitively, the composition (S ′ ◦ S) : X →
Z is obtained by connecting the exits of S with the entries of S ′. Formally
S ′ ◦ S = (S + S ′, ρ), where the transition measure ρ is given by

ρs(B) =






µs(B) if s ∈ S, B ⊆ Act× S
∫

Y
µ′

(·)(B)dµs if s ∈ S, B ⊆ (Act× S ′) + Z

µ′
s(B) if s ∈ S ′, B ⊆ (Act× S ′) + Z

0 if s ∈ S ′, B ⊆ Act× S .

Proposition 3.4 Composition in LMP is well-defined and associative. The
identity maps and coproducts in LMP are inherited from SRel.

The proof of Proposition 3.4 is routine. However we will give an indirect
proof later as an application of our duality for LMP.

4 Stone Duality for C∗-Algebras

This section contains some background definitions and results about pre-
ordered rings and C∗-algebras from the monograph of Johnstone [15].

Let A be a commutative ring with identity 1. Since we are primarily
interested in rings of functions, we use f, g to denote typical elements of A.
As is usual, given n ∈ N, we write n ∈ A for the n-fold sum of the identity.
We say that A is a preordered ring if it is equipped with a preorder satisfying

• 0 ⊑ f 2 (all squares are positive)

• f ⊑ f ′ implies f + g ⊑ f ′ + g

• f ⊑ f ′ and 0 ⊑ g implies f · g ⊑ f ′ · g.
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Equivalently we can define such a preorder by specifying a set P ⊆ A that
is closed under addition and multiplication, and which contains all squares.
Such a set is called a positive cone in A. Then a preorder on A is defined by
f ⊑ g iff g − f ∈ P .

We denote by ORng the category of preordered rings and monotone ring
homomorphisms.

We say that a preordered ring A is Archimedean if for all f there exists
a positive integer n with f ⊑ n. If the additive group of A is torsion-free
and divisible, so that A admits a Q-algebra structure, then we may define a
seminorm on A by

||f || = inf{q ∈ Q : −q ⊑ f ⊑ q}. (1)

(Here if q = n/m ∈ Q, then we let q denote the unique element of q ∈ A
satisfying m · q = n.) This seminorm satisfies

||f + g|| ≤ ||f ||+ ||g|| and ||f · g|| ≤ ||f || ||g|| .

However we may have ||f || = 0 for nonzero f , that is, we have a seminorm
rather than a norm.

Definition 4.1 A partially ordered ring A is a real C∗-algebra if

• the additive group of A is torsion free and divisible, and

• Equation 1 defines a norm with respect to which A is complete.

The category C∗-Alg is the full subcategory of ORng determined by the class
of C∗-algebras. .

Here we should emphasise that we work with the notion of real C∗-algebras
as opposed to the more widely known notion of complex C∗-algebras (cf.
Naimark [13, Theorem III.2.1]). Also we recall from [15, Lemma 4.5] that
an element of a C∗-algebra is positive iff it is a square. Thus the partial or-
der is determined by the ring structure, and ring homomorphisms between
C∗-algebras are automatically order preserving.

Example 4.2 Let Y be a measurable space and B(Y ) the set of bounded mea-
surable real-valued functions on Y equipped with the pointwise order. Then
B(Y ) is a C∗-algebra. The induced norm is here is just the supremum norm,
and B(Y ) is complete in this norm since the pointwise limit of a sequence of
measurable functions is again measurable.

Definition 4.3 A character of a C∗-algebra A is a ring homomorphism
ϕ : A→ R. The spectrum of A, denoted Spec A, is the space of characters
of A in the Zariski topology, which is generated by the cozero sets coz(f) =
{ϕ : ϕ(f) 6= 0} where f ∈ A.

The spectrum of a C∗-algebra is a compact Hausdorff space. Conversely,
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the ordered ring C(X) of continuous real-valued functions on a compact Haus-
dorff space X is a C∗-algebra. This association of compact Hausdorff spaces
and C∗-algebras is functorial, and yields a dual equivalence:

Theorem 4.4 (Stone) The category KHaus of compact Hausdorff spaces
and continuous maps is dually equivalent to C∗-Alg.

5 Trace Trees

Fix a measurable space Y of exit points. We define a grammar of trace trees,
generated from the set B(Y ) of bounded measurable real-valued functions on
Y by prefixing and multiplication. These trace trees are simplified versions
of the tests considered by Larsen and Skou [17] in their paper characterising
bisimulation as a testing equivalence, but adapted to the fact that we consider
LMPs with exit points.

The trace trees are given by the grammar

t ::= 1 | ε.g | a.t | t ∗ t , (2)

where g ∈ B(Y ) and a ∈ Act.

We think of 1 as the null trace; a.t is read as t prefixed by a ∈ Act; ε.g is
read as g prefixed by the silent action ε; finally we call t1 ∗ t2 the product of
t1 and t2. Note the distinction between prefixing and product. We adopt the
convention that prefixing binds more tightly than product. We also sometimes
elide the symbol 1 when denoting non-trivial trace trees, e.g., we write a ∗ b.c
for a.1 ∗ b.c.1.

We call the terms generated by (2) trace trees because there is a very
natural way to view them as trees whose edges are labelled in Act ∪ {ε}
and whose leaves are either unlabelled or labelled by elements of B(Y ). For
instance, the term a.1 ∗ b.((a.1 ∗ ε.g) ∗ b.1) is pictured as

•
a

~~
~~

~~
~

b

@@
@@

@@
@

• •
a

��
��

��
��

ε
b

??
??

??
??

• g •

Definition 5.1 specifies the probability tS(s) that an LMP S in state s can
perform the trace tree t. The null trace is performed with probability one in
any state. The probability of performing a.t is the probability of performing
an a-action and then doing t. Prefixing by ε is interpreted similarly. For
instance, if g = χA is the characteristic function of a measurable set A ⊆ Y ,
then the probability of doing ε.g is the probability of making an ε-transition
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to a state in A. Finally, the probability that a state performs t1 ∗ t2 is the
product of the probability it performs t1 and the probability it performs t2.

Definition 5.1 Given an LMP S : X → Y , where S = (S, µ), each trace tree
t is interpreted as a real-valued function tS on S + X by:

1S(s) = 1

(a.t)
S
(s) =

∫

S

tS dµs,a

(ε.g)
S
(s) =

∫

S

g dµs,ε

(t1 ∗ t2)S(s) = (t1)S(s) · (t2)S(s) .

Without product, the grammar (2) would just specify a language of traces,
and tS(s) would give the probability that state s can perform trace t. Product
is required to discriminate between processes that are trace equivalent but not
bisimilar. We refer the reader to Larsen and Skou [17] and Abramsky [1] for
further discussion about related classes of branching traces (or tests), both in
the context of probabilistic and nondeterministic labelled transition systems.

The following theorem, our first main result, states that LMPs are charac-
terised up to bisimilarity by their trace-tree semantics. The proof, which will
be given later, relies on an application of Stone duality for real C∗-algebras.

Theorem 5.2 Two LMPs S,S ′ : X → Y are bisimilar iff tS(x) = tS′(x) for
all trace trees t and x ∈ X.

This result generalises and simplifies a result of Larsen and Skou [17]. Our
class of tests is a simplification of theirs, and their result applied to LMPs with
a strong discreteness assumption. Also the proofs are quite different: [17] use
statistical arguments, including Chebyshev’s inequality.

6 A Comonad of Trace Trees

In this section, we define a comonad (T , ξ, δ) on the category ORng based
on a generalised notion of trace tree. Given a preordered ring R, we present
a new ring T (R) by generators and relations, where the set of generators is
given by the following grammar (which corresponds to (2), but with B(Y )
replaced by an arbitrary ring R):

t ::= 1 | ε.r | a.t | t ∗ t,

where a ∈ Act and r ∈ R.

The terms generated by the above grammar are called the trace trees over
R; thus our original notion of trace tree in Section 5 gives the trace trees over
B(Y ). For each trace tree t we include a generator [t] in the presentation of
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T (R). (We distinguish between trace trees and the corresponding generators
in the interests of clarity, but we will later drop the distinction.) The relations
we postulate in the presentation of T (R) include the following equations,
where r1, r2 ∈ R and t1, t2 are trace trees.

[ε.0] = 0 (3)

[ε.r1] + [ε.r2] = [ε.(r1 + r2)] (4)

[1] = 1T (R) (5)

[t1 ∗ t2] = [t1] · [t2] (6)

Intuitively, Equations 3 and 4 say that prefixing by ε is linear. Equation 5
says that the null tree 1 is interpreted as the multiplicative identity in T (R).
Lastly, Equation 6 says that the product operation ∗ on trace trees corresponds
to multiplication in T (R) (which is denoted ·).

We define the preorder on T (R) to be the least one satisfying the axioms for
a preordered ring (cf. Section 4), plus the following clauses in which r1, r2 ∈ R
and t1, t2 are trace trees over R.

[t1] ⊑ [t2] =⇒ [a.t1] ⊑ [a.t2] (7)

r1 ⊑ r2 =⇒ [ε.r1] ⊑ [ε.r2] (8)

[ε.1R] +
∑

a∈Act

[a.1] ⊑ 1T (R) . (9)

These inequalities are connected with our interpretation of prefixing as
integration against a positive measure. Inequalities 7 and 8 say that prefixing
by a ∈ Act or by ε is monotone, whereas Inequality 9 is connected with the
fact that the total mass of each transition measure µs in an LMP is at most
one (cf. the proof of Proposition 7.1).

Definition 6.1 Given a preordered ring R, T (R) is the preordered ring pre-
sented with generators the trace trees over R and Relations (3—9).

Since the class of trace trees is closed under multiplication in T (R) it
follows that a typical element of T (R) is equal to a linear combination (over
Z) of trace trees. In turn, this entails that prefixing by a ∈ Act extends
uniquely to a selfmap of T (R) that distributes over finite sums, i.e., we write
a.0 = 0 and a.([t1] + [t2]) = [a.t1] + [a.t2].

Proposition 6.2 If R is Archimedean then so is T (R).

Proof. All the terms in the sum on the left-hand side of Inequality 9 are
positive. This entails that each individual summand is dominated by the
right-hand side, that is, [ε.1R] ⊑ 1 and [a.1] ⊑ 1 for all a ∈ Act. We use these
inequalities and structural induction to verify that the Archimedean axiom
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holds for all trace trees.

For the base case, suppose g ∈ R. Since R is Archimedean, there exists
n ∈ N such that g ⊑ n in R. Then [ε.g] ⊑ [ε.n] = n · [ε.1R] ⊑ n (where the
last inequality holds because [ε.1R] ⊑ 1).

The inductive case for prefixing by a ∈ Act is similar. Suppose t is a trace
tree and [t] ⊑ n. Then by monotonicity and linearity of prefixing in T (R) we
have [a.t] ⊑ a.n = n · [a.1] ⊑ n. The inductive case for product of trace trees
is straightforward. This completes the proof that each trace tree is dominated
by some n ∈ N.

Finally, since each element of T (R) is equal to a linear combination of
trace trees, the Archimedean axiom immediately follows. 2

Remark 6.3 Given a preordered ring A, to define a monotone ring homo-
morphism h : T (R) → A it suffices to define an interpretation in A of the
trace trees over R that respects Relations (3—9). Note that Equations 5 and
6 force us to interpret multiplication of trace trees as multiplication in A, so
we need only specify the value of h on trace trees of the form a.t and ε.r.

Next we complete the definition of the comonad (T , ξ, δ). Note that in the
sequel we omit square brackets when referring to trace trees as elements of
T (R).

Definition 6.4 The comultiplication δ : T ⇒ T 2 has components δR :
T (R) → T 2(R) defined by the following clauses, where t is a trace tree over
R and r ∈ R (cf. Remark 6.3):

δR(a.t) = a.δR(t) + ε.(a.t)

δR(ε.r) = ε.ε.r .

The counit ξ : T ⇒ Id has components ξR : T (R)→ R defined by

ξR(a.t) = 0

ξR(ε.r) = r.

Following Remark 6.3, it should be verified that the above definitions of
δR and ξR respect Relations (3—9). This verification is routine: as a repre-
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sentative, we give details of the argument that δR respects Inequality 9.

δR(ε.1R +
∑

a∈Act

a.1T (R)) = δR(ε.1R) + δR(
∑

a∈Act

a.1T (R))

= ε.ε.1R +
∑

a∈Act

δR(a.1T (R)) [Defn. of δR]

= ε.ε.1R +
∑

a∈Act

(a.1T 2(R) + ε.a.1T (R)) [Defn. of δR]

= ε.(ε.1R +
∑

a∈Act

a.1T (R)) +
∑

a∈Act

a.1T 2(R) [Eqn. 4]

⊑ ε.1T (R) +
∑

a∈Act

a.1T 2(R) [Eqn. 9]

⊑ 1T 2(R) . [Eqn. 9]

Observe that comultiplication maps a trace tree t to the sum of all possible
decompositions of t. First a simple example without branching: δR(a.b.c) =
ε.(a.b.c) + a.ε.(b.c) + a.b.ε.c + a.b.c. Next, an example with branching:

δR(a.(b ∗ c)) = ε.a.(b ∗ c) + a.(ε.b ∗ ε.c) + a.(ε.b ∗ c) + a.(b ∗ ε.c) + a.(b ∗ c) .

Theorem 6.5 (T , δ, ξ) is a comonad on ORng.

Proof. The counit laws are trivial. We will verify the associativity law for
comultiplication. This asserts that the following diagram commutes.

T (R)

δR

��

δR
// T 2(R)

T (δR)
��

T 2(R)
δT (R)

// T 3(R)

By Remark 6.3 it suffices to show that δT (R)(δR(t)) = T (δR)(δR(t)) for all
trace trees t. We do this by structural induction on t ∈ T (R).

For the base case we observe that δT (R)(δR(ε.r)) = ε.ε.ε.r = T (δR)(δR(ε.r))
for all r ∈ R.
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The inductive clause for prefixing is as follows:

δT (R)(δR(a.t)) = δT (R)(a.δR(t) + ε.a.t) [defn. of δR]

= δT (R)(a.δR(t)) + δT (R)(ε.a.t)

= a.δT (R)(δR(t)) + ε.a.δR(t) + δT (R)(ε.a.t) [defn. of δT (R)]

= a.δT (R)(δR(t)) + ε.a.δR(t) + ε.ε.a.t [defn. of δT (R)]

= a.T (δR)(δR(t)) + ε.a.δR(t) + ε.ε.a.t [ind. hyp.]

= a.T (δR)(δR(t)) + ε.(a.δR(t) + ε.a.t) [Eqn. 4]

= a.T (δR)(δR(t)) + ε.δR(a.t) [defn. of δR]

= T (δR)(a.δR(t) + ε.a.t) [action of T (δR)]

= T (δR)(δR(a.t)) . [defn. of δR]

The inductive clause for multiplication straightforwardly follows from the
fact that the components of δ, being ring maps, respect multiplication. 2

7 Duality

The class of trace trees as originally defined in Section 5 can now be seen as
the generators of T B(Y ). Next we verify that the semantics of trace trees
relative to an LMP S : X → Y , as given in Definition 5.1, uniquely specifies
a map T B(Y ) → B(X + S) in ORng. To denote this map we reuse the
notation (−)S introduced in Definition 5.1.

Proposition 7.1 Let S : X → Y be an LMP, with S = (S, µ). There is a
unique monotone ring homomorphism

T B(Y )
(−)S
−→ B(X + S)

satisfying the following two clauses:

(a.t)S(s) =

∫

S

tS dµs,a

(ε.g)S(s) =

∫

Y

g dµs,ε .

for all g ∈ B(Y ), trace trees t ∈ T B(Y ), and s ∈ X + S.

Proof. By Remark 6.3 it suffices to verify that (−)S respects Equations 3–9.
Equations 3—6 are respected because integration is linear, and Inequalities 8
and 7 are respected because integration is monotone. It remains to verify that
Inequality 9 is respected.

To this end, writing t = 1Y +
∑

a∈Act a.1 we have
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tS(s) =

∫

Y

dµs,ε +
∑

a∈Act

∫

S

dµs,a

= µs(Y + Act× S)

6 1 = tS(1) .

2

We now come to the central definition of this paper: the dual of an LMP.

Definition 7.2 Let S : X → Y be an LMP and let πX : B(X + S) →
B(X) be given by πX(f) = f |X. Following on from Proposition 7.1, define

Ŝ : T B(Y )→ B(X) to be the following composition

T B(Y )
(−)S
−→ B(X + S)

πX−→ B(X) .

We call Ŝ the dual of S. Notice that Ŝ is a map B(Y ) → B(X) in the
co-Kleisli category of the trace tree comonad (T , ξ, δ). Later we will show that
composition of LMPs, as defined in Section 3.1, corresponds to composition
in the co-Kleisli category. However the remainder of this section is devoted to
proving Theorem 5.2, which can now be reformulated as asserting that S is
bisimilar to S ′ iff Ŝ = Ŝ ′.

The proof of Theorem 5.2 involves completing T B(Y ) to a C∗-algebra
A(Y ) and constructing a final LMP whose state space is the spectrum of
A(Y ). In this representation, a state of the final LMP is a character ϕ of
A(Y ). Such states have the following extensionality property: the value ϕ(t)
of ϕ on a given trace tree t is just the probability that ϕ, regarded as a state,
can perform t.

7.1 A C∗-algebra of Trace Trees

Let ARng be the full subcategory of ORng consisting of Archimedean pre-
ordered rings. In this section we observe that C∗-Alg is a reflective subcate-
gory of ARng. Recall from Section 4 that an Archimedean preordered ring A
is a C∗-algebra iff the additive group of A is torsion-free and divisible (equiv-
alently, if A admits a Q-algebra structure) and if A is complete in the norm
(1).

Definition 7.3 Given commutative rings A and B, the tensor product of A
and B as Abelian groups can be turned into a ring by defining (a⊗b) ·(x⊗y) =
ax⊗ by and then extending linearly. This is the ring tensor product A⊗B
of A and B.

Note that the ring tensor product Q⊗A is nothing but the free Q-algebra
over A. In case A is a preordered ring, we can equip Q⊗A with the smallest
preorder such that 0 ⊑ q ⊗ a whenever 0 ⊑ q in Q and 0 ⊑ a. In this case it
is clear that Q⊗A inherits the Archimedean property from A.
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Proposition 7.4 The inclusion U : C∗-Alg →֒ ARng has a left adjoint F .

Proof. Write ARngQ for the subcategory of ARng consisting of the torsion-
free divisible rings. We can factor U into two parts: the inclusion U1 :
C∗-Alg →֒ ARngQ and the inclusion U2 : ARngQ →֒ ARng. We show
that both U1 and U2 have left adjoints. Indeed we have already observed that
the map A 7→ Q⊗A gives a left adjoint to U2. The left adjoint to U1 is given
by Cauchy completion, as we explain below.

A ring A ∈ |ARngQ| can be equipped with the seminorm (1) from Section
4. Let B denote the Cauchy completion of A in this norm, and write η1 : A→
B for the unit of the Cauchy-completion adjunction. Note that η1 identifies
all elements of A with zero norm, so it need not be injective. However, given
f ∈ A, we will denote η1(f) ∈ B by just f .

We define a ring structure on B by f+g = limn(fn+gn) and fg = limn fngn,
where f, g ∈ B are such that f = limn fn and g = limn gn for fn, gn ∈ A. We
also define a partial order on B by specifying the cone of positive elements.
We say that 0 ⊑ f if f = limn fn for fn ∈ A with 0 ⊑ fn. It is easy to show
that the ring structure is well-defined, that B is a Q-algebra, and that the
order is Archimedean.

We can now consider two different norms on B: the norm it inherits as the
Cauchy completion of A and the norm (1). It is straightforward that these two
coincide, and we conclude that B is complete in the norm (1) and is therefore
a C∗-algebra. 2

Definition 7.5 Let A(Y ) denote the reflection of T B(Y ) in C∗-Alg.

Recall from Proposition 7.1 that an LMP S : X → Y induces a monotone
ring homomorphism (−)S : T B(Y ) → B(X + S). Since B(X + S) is a C∗-
algebra (cf. Example 4.2), by Proposition 7.4 the above map factors through
A(Y ) yielding a map (which we denote by the same name) (−)S : A(Y ) →
B(X + S).

Write η : Id → UF for the unit of the adjunction defined in Proposition
7.4. The following proposition shows that F (A) is free over A even if we
consider maps that don’t preserve multiplicative structure.

Proposition 7.6 Let A be an Archimedean preordered ring, B a C∗-algebra,
and f : A → UB a monotone function that is also a group homomorphism
with respect to the additive structure of A and B. Then there is a unique
R-linear monotone map f : F (A)→ B such that Uf ◦ η = f .

Proof. The map f is defined exactly as if f were a monotone ring map:
first f extends uniquely to a monotone Q-linear map Q ⊗ A → B given by
q ⊗ a 7→ q · f(a). This last map extends to an R-linear map on the Cauchy
completion of Q⊗ A. 2
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Note that prefixing by a ∈ Act is a monotone map a.(−) : T B(Y ) →
T B(Y ) that is a homomorphism with respect to the additive group structure
of T B(Y ) → T B(Y ). By Proposition 7.6 this extends to monotone R-linear
map A(Y )→ A(Y ).

7.2 A Universal LMP

We now define a universal LMP with state space SpecA(Y ) 4 . To manufacture
the transition probabilities we use the Riesz representation theorem [21].

Theorem 7.7 (Riesz) Let K be a compact Hausdorff space and
ϕ : C(K)→ R a monotone R-linear map. Then there is a unique posi-
tive Borel measure µ on K such that ϕ(f) =

∫
fdµ for all f ∈ C(K). The

total mass of µ is given by ϕ(1).

Given ϕ ∈ SpecA(Y ), define its derivative ϕa : A(Y ) → R with respect
to a ∈ Act by ϕa(f) = ϕ(a.f). Then ϕa is monotone and linear in the sense
of Theorem 7.7 since both ϕ and the prefixing map a.(−) are monotone and
linear on A(Y ).

Definition 7.8 Define µ : SpecA(Y ) −→ M(Y + (Act × SpecA(Y )) as
follows.

Given ϕ ∈ SpecA(Y ) and a ∈ Act, define µϕ,a to be the Borel measure on
SpecA(Y ) corresponding by Theorem 7.7 to the linear map

C(SpecA(Y )) ∼= A(Y )
ϕa

−→ R .

(Note that the isomorphism C(SpecA(Y )) ∼= A(Y ) comes from Theorem 4.4.)
Furthermore, define a positive Borel measure µϕ,ε on Y by µϕ,ε(A) = ϕ(ε.χA)
for each measurable A ⊆ Y . This completes the definition of µϕ and it remains
to observe that µϕ is a subprobability measure since its total mass is given by

µϕ,ε(Y ) +
∑

a∈Act µϕ,a(SpecA(Y )) = ϕ(ε.1Y ) +
∑

a∈Act ϕa(1)

= ϕ(ε.1Y +
∑

a∈Act a.1)

6 ϕ(1) [Eqn. 9]

= 1 .

Definition 7.8 specifies an LMP of type ∅ → Y . The following proposition
formalises the idea that this is a universal LMP on the space of exit points
Y . It says that for an arbitrary LMP S : X → Y we can augment the
universal LMP by specifying a space of entry points X, thus obtaining an
LMP S∗ : X → Y , such that there is a zig-zag map from S to S∗.

4 By definition of A(Y ) there is a bijection between SpecA(Y ) and ORng(T B(Y ), R).
Nevertheless it is convenient to work with A(Y ) since there is no way to recover T B(Y )
from ORng(T B(Y ), R).
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Definition 7.9 Given an LMP S : X → Y , define π : X → SpecA(Y ) by
π(x)(f) = fS(x). Furthermore write S∗ : X → Y for the LMP with state
space SpecA(Y ) and transition map

[µ ◦ π, µ] : X + SpecA(Y ) −→M(Y + (Act× SpecA(Y )) ,

where µ is as in Definition 7.8.

Proposition 7.10 The function h : S → SpecA(Y ) defined by h(s)(f) =
fS(s) is a zig-zag map S → S∗.

Proof. Let ρ : X + S →M(Y + (Act× S)) be the transition function of S.
According to Definition 2.3, h : S → SpecA(Y ) is a zig-zag map iff (i) ρs,a◦h

−1

and µh(s),a are identical measures on SpecA(Y ) for each s ∈ S and a ∈ Act,
and (ii) ρs,ε and µh(s),ε are identical measures on Y for each s ∈ S. We will
demonstrate that (i) holds in this case; the justification of (ii) is similar.

Given f ∈ A(Y ) let f̂ ∈ C(SpecA(Y )) be defined by f̂(ϕ) = ϕ(f). Note

that f̂(h(s)) = h(s)(f) = fS(s) for all s ∈ S. Thus we have

∫
f̂ d(ρs,a ◦ h−1) =

∫
(f̂ ◦ h) dρs,a

=

∫
fS dρs,a

= (a.f)S(s) [defn. of (−)S ]

= h(s)(a.f)

=

∫
f̂ dµh(s),a . [by Defn. 7.8]

By the Riesz representation theorem, two Borel measures on SpecA(Y )
are equal iff their respective integrals against any continuous function are
equal. But each continuous function on SpecA(Y ) has the form f̂ for some
f ∈ A(Y ). We conclude that ρs,a ◦ h−1 = µh(s),a. 2

We obtain the following corollary, which is a restatement of Theorem 5.2:
if two LMPs have the same dual then they are bisimilar.

Corollary 7.11 LMPs S,S ′ : X → Y are bisimilar if Ŝ = Ŝ ′.

Proof. According to Definition 7.9, if Ŝ = Ŝ ′ then S∗ = S ′
∗. But then two

applications of Proposition 7.10 yield a cospan S −→ S∗ = S ′
∗ ←− S

′ of
zig-zag maps, showing that S and S ′ are bisimilar according to Definition
2.4. 2
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8 Structure of the Dual Category

In this section we characterise the dual category of LMP, which we call Eval.

Definition 8.1 The objects of the category Eval are the measurable spaces,
and an arrow X → Y is a homomorphism T B(X) → B(Y ) of preordered
rings. Composition in Eval is just as in the co-Kleisli category of T . We call
the morphisms in this category evaluations.

In this section we extensively rely on Remark 6.3, that is, we define a
monotone ring map h : T B(Y ) → B(X) just by specifying the values h(ε.g)
and h(a.t) for each g ∈ B(Y ), a ∈ Act and trace tree t. This suffices to define
h on the set of all trace trees over B(Y ), and it then remains to check that h
respects the relations in the presentation of T B(Y ).

Example 8.2 Recall from Section 3 that binary coproducts in LMP are given
by the stochastic relations inl : X → X + Y and inr : Y → X + Y . Here
we describe the dual maps înl = π1 : T B(X + Y ) → B(X) and înr = π2 :
T B(X + Y )→ B(Y ). These are defined by

π1(a.t) = 0

π1(ε.g) = g |X ,

and

π2(a.t) = 0

π2(ε.g) = g |Y .

The fact that the coproduct injections are stateless corresponds to the fact
that π1 and π2 map any trace tree not of the form ε.g to 0. The subcategory
of maps with this property is (isomorphic to) SPT, the category of stochastic
predicate transformers of Definition 3.2.

The following proposition shows that composition of LMPs corresponds to
composition in Eval.

Proposition 8.3 Given LMPs S1 : X → Y and S2 : Y → Z, (S2 ◦ S1)̂ = Ŝ1 ◦

Ŝ2.

Proof. Write S1 = (S, µ), S2 = (S ′, µ′) and, following Section 3.1, denote the
transition function of S2 ◦ S1 by ρ.

We show that the following two statements hold for all trace trees t ∈
T B(Z).

(i) tS2◦S1(s) = tS2(s) for all s ∈ S ′.

(ii) tS2◦S1(s) = ((T Ŝ2 ◦ δB(Z))(t))S1(s) for all s ∈ S + X.
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Before proving them, we observe that (ii) yields our desired conclusion. Indeed
for t ∈ T B(Z) and x ∈ X we have

(S2 ◦ S1)̂ (t)(x) = tS2◦S1(x) [Defn. 7.2]

= ((T Ŝ2 ◦ δB(Z))(t))S1(x) [by (ii)]

= (Ŝ1 ◦ T Ŝ2 ◦ δ)(t)(x) [Defn. 7.2]

= (Ŝ1 ◦ Ŝ2)(t)(x) [co-Kleisli composition]

It remains to prove (i) and (ii). Statement (i) says that the probability of
performing a trace tree starting from s ∈ S ′ does not depend on whether we
regard s as a state of S2 or of S2 ◦ S1. The proof is straightforward given the
fact that for s ∈ S ′ and E ⊆ Z + (Act× S ′) we have µ′

s(E) = ρs(E).

We prove (ii) by structural induction on trace trees.

(a.t)S2◦S1(s) =

∫

S+S′

tS2◦S1 dρs,a

=

∫

S

tS2◦S1 dµs,a +

∫

Y

λy.

(∫

S′

tS2◦S1 dµ′

y,a

)
dµs,ε [defn. of ρs.a]

=

∫

S

tS2◦S1 dµs,a +

∫

Y

λy.

(∫

S′

tS2 dµ′

y,a

)
dµs,ε [by (i)]

=

∫

S

tS2◦S1 dµs,a +

∫

Y

(a.t)S2 dµs,ε [Defn. 5.1]

=

∫

S

((T Ŝ2 ◦ δB(Z))(t))S1 dµs,a +

∫

Y

(a.t)S2 dµs,ε [ind. hyp. (ii)]

= (a.T Ŝ2(δB(Z)(t)))S1(s) + (ε.Ŝ2(a.t))S1(s) [Defn. 5.1]

= (a.T Ŝ2(δB(Z)(t)) + ε.Ŝ2(a.t))S1(s)

= (T Ŝ2(a.δB(Z)(t) + ε.a.t))S1(s) [action of T Ŝ2]

= T Ŝ2(δB(Z)(a.t))S1(s) [Defn. 6.4]

2

Corollary 8.4 Composition in LMP is associative.

Proof. This follows immediately from the fact that composition in the co-
Kleisli category of T is associative. 2

9 Conclusions

This paper characterised bisimulation equivalence of LMPs as trace-tree equiv-
alence. This characterisation was proved using Stone duality for real C∗-
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algebras to construct a universal LMP as the spectrum of a C∗-algebra of
trace trees. The fact that bisimilarity has such a simple characterisation as a
trace-like equivalence corresponds to the intuition that probabilistic branching
is better behaved than genuine nondeterminism.

We also considered LMPs with distinguished sets of entries and exits as
generalised stochastic relations. Using the notion of trace tree over a ring, we
defined a comonad on ORng and established a duality between LMPs and
maps in the co-Kleisli category of the comonad.

One aspect of the category LMP that we have not touched on is its par-
tially additive structure. In fact, it is straightforward to generalise the partially
additive structure of SRel (as outlined in [20]) to LMP, and thus to define
an iteration operation on LMP. A question for future work is to isolate some
extra structure on the trace-tree comonad T that corresponds to iteration of
LMPs, just as comultiplication corresponds to composition of LMPs. Here we
are thinking of a decomposition of trace trees, along the lines of Definition
6.4, that captures the sum-over-paths intuition that lies behind the definition
of iteration in LMP.
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