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Abstract

As a part of a continued effort towards a logical
framework for incremental reasoning about secu-
rity, we attempted a derivational reconstruction of
GDOI, the protocol proposed in IETF RFC 3547 for
authenticated key agreement in group communica-
tion over IPsec. The main advantage of the deriva-
tional approach to protocols is that it tracks the
way they are designed: by refining and composing
basic protocol components — but this time within
a formal system, thus providing formal assurance of
their security. Moreover, by distinguishing mono-
tonic and compositional fragments of protocol de-
signs, this approach facilitates tracking and formal-
izing of the incremental changes and modifications
that complicate design process, increases reusabil-
ity, and minimizes need for reverification.

While deriving GDOI, we have discovered that the
simple logic, that we recently developed for deriving
authentication, can also be used to prove its failures,
and to generate attacks. By changing the proof goal,
we have discovered an attack on GDOI that had not
surfaced in the previous extensive analyses by other
verification techniques. At the time of writing, we
are working together with the Msec Working Group
to develop a solution to this problem.

After a brief overview of the logic, we outline a
derivation of GDOI, which displays its valid security
properties, and the derivations of two attacks on it,
which display its undesired properties. Finally, we
discuss some modifications that eliminate these vul-
nerabilities. Their derivations suggest proofs of the
desired authentication property.

∗Supported by ONR N00014-03-C-0237 and by NSF CCR-
0345397.

1 Introduction

The formal analysis of cryptographic protocols has
turned out to provide a useful way to find errors in
security protocols, or to validate them. In a num-
ber of cases, formal tools and techniques have been
used to discover problems in protocols that had al-
ready been designed and deployed. In principle, it
is of course much preferable to catch and remove
problems early in the design phase, and before de-
ployment. The ultimate goal of formal methods is
to assist in design and deployment of protocols, as
well as analysis.

A key feature that is needed to support the inte-
gration of formal methods into cryptographic pro-
tocol design is composability. Most of the design of
a working cryptographic protocol is incremental in
nature. One starts with a simple pattern that gives
the basic skeleton of the protocol. One then adds
the particular functionality needed for the particular
application in mind. Some of the added functions
may be optional, leading to different versions of the
protocol. Finally, if some of the added features re-
quire interaction between the principals, it may be
necessary to compose the protocol with some other
protocol or protocols. For example, if one wants a
key distribution protocol to enforce perfect forward
secrecy, one may want to compose it with the Diffie-
Hellman protocol.

In a situation like this it would be ideal if one could
verify as well as design incrementally. It should
be possible to identify situations in which proper-
ties that have been proven to be true remained true
even after the protocol was modified in certain con-
strained ways. Unfortunately, this is in general a
very hard problem in formal methods. In the gen-
eral case, even minor changes can fail to preserve
properties that had previously held.



A solution, of course, is to restrict oneself to proper-
ties and transformations that can be reasoned about
incrementally; and more generally, to develop tech-
niques to recognize conditions under which the se-
curity properties of interest are preserved under re-
finement, composition, or transformations at large.
One such technique, in the framework of protocol
derivations, has been studied in [9]. In the context
of general theory of protocols, the issue of composi-
tionality has been widely investigated, in various ab-
stract process models. Some of the recent references
are [6, 2, 16]. While the general problem of compo-
sitionality and monotonicity of security properties
remains open, particular applications do allow use-
ful deployment of incremental methods, informally
used in many protocol development efforts and pub-
lications. We believe that such practices can and
should be formalized.

With this in mind, we have been developing a mono-
tone epistemic logic that provides a straightforward
way of composing derivations of properties. In
this logic, all statements express agents’ knowledge
about concrete situations and events such as the
possession of keys and the sending and receipt of
messages. These statements can then be composed
to prove the desired conclusions about the sequences
of events that must occur in a protocol. The current
version, addressing only authenticity, however, does
not involve composition of knowledge modalities,
so that the epistemic nature of this logic remains
on a rather rudimentary level. While it resembles
BAN logic [5] in this restriction to authentication,
the present logic is much simpler, with the order of
actions as its only non-logical primitive.

Most importantly, the logic proceeds in much the
same way as a protocol is designed. One starts with
some simple patterns, for which some basic proper-
ties are established in advance. These patterns are
then composed into the basic protocol. The prop-
erties add up in so far as they preserve each other’s
assumptions [9]. The next step is to add specific fea-
tures that the protocol must provide: these would
include, for example, the actual data that the pro-
tocol is intended to distribute securely. At this step,
the protocol can also be composed with other, aux-
iliary, patterns.

An interesting and useful feature of the logic is that
the same approach can be used to derive attacks on
insecure protocols as to prove security properties of
sound ones. This is often done by lifting a simple
attack on a simple protocol component to a more

subtle attack on a more complex protocol. The at-
tack on a component C is expressed as a process
on its own, say C̃, corresponding to a logical state-
ment of an undesired property. If the protocol P
has been derived by using C in a derivation ∆, then
replacing C by C̃ in ∆ will yield a derivation ∆̃ of
an attack P̃ on P , whenever the relevant undesired
property is preserved. The result is that we are able
to take advantage of our knowledge of C̃ to derive
the attack P̃ .

Other attacks on protocols, of course, may not arise
from attacks on their components, but may emerge,
e.g., from insecure composition of secure compo-
nents. Such attacks can still be derived, just like
counterexamples are derived in logic, by changing
the derivation goals. Since attacks, like protocols,
are often based on simple patterns, attack deriva-
tions have the potential to be a useful feature for
parlaying knowledge about basic attacks, and about
propagating insecurities, into understanding of the
vulnerabilities of complex protocols, just like proto-
col derivations parlay knowledge about basic proto-
cols, and about preservation of security properties.

The logic used in our derivations draws upon the
ideas of earlier derivational formalisms, developed in
[11, 8]. The crucial difference is again that the state-
ments of the new logic are couched entirely in terms
of partial orders (distributed traces) of actions, as
observed by each agent, or derived from her obser-
vations and the common axioms. One consequence
of this is that we are now less likely to encounter
some of the problems that epistemic logics at large
have had in the past, where it was sometimes diffi-
cult to determine from the conclusions of an analy-
sis what actual behavior was expected of a protocol.
Another consequence is that our derivation system
has a smaller syntax and simpler semantics than its
predecessors. The space nevertheless permits only
a broad overview; but the formalism is this time so
simple that it will hopefully suffice to show it at
work. A more detailed presentation is in prepara-
tion [18].

The present paper is concerned with an applica-
tion to the Group Domain of Interpretation (GDOI)
[3] protocol, developed by the Internet Engineer-
ing Task Force (IETF). This protocol is not only
of great practical interest, because of its wide ap-
plications in secure multicast, and in secure group
communication at large [3, sec. 1.1], but also of par-
ticular conceptual interest, because of the previous
detailed analyses using the NRL Protocol Analyzer



(NPA)[17]. The NPA is a model checker that, like
the logic described in this paper, can be used to
both provide security proofs and discover attacks,
but does not support incremental or compositional
verification. Interestingly, a failed composition in-
volving a portion of the protocol called the ”Proof of
Possession” pointed up a potential problem with an
optional means for providing authorization, which,
because of a misunderstanding of the requirement,
had been missed in the NPA analysis. The attack
presented in this paper has arisen from an attempt
to derive the GDOI protocol with the Proof of Pos-
session option: the analysis of the step compos-
ing the core GDOI with the subprotocol underlying
Proof of Possession has shown that the insufficient
binding between the two components allowed deriv-
ing attacks, rather than the desired security prop-
erty.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the GDOI protocol. In sec. 3 we
give a brief overview of the logic. In sec. 4 we de-
scribe the derivation of the Core GDOI protocol. In
sec. 5 we describe the derivation of the Proof of Pos-
session protocol and its composition with the core
GDOI protocol. In sec. 6 we discuss the derivation
of the attack and some suggestions for fixing the
protocol. In sec. 7 we compare our results with the
earlier NPA analysis and conclude the paper.

2 The GDOI Protocol

In this section we describe the relevant portions of
the GDOI protocol that are discussed in this paper.

GDOI actually consists of two main protocols: the
GROUPKEY-PULL protocol, which is used when a
new member joins the group, and the GROUPKEY-
PUSH datagram, which is used to distribute keys to
current members. In this paper we are interested in
the GROUPKEY-PULL protocol.

The GROUPKEY-PULL protocol takes place be-
tween a Group Controller/Key Server (GCKS) and
a member who wants to join the group. Authenti-
cation and secrecy are provided by a key that was
previously exchanged using the Internet Key Ex-
change (IKE) protocol [13]. The purpose of IKE is
to provide secure key distribution between two prin-
cipals. Keys are distributed by IKE in two phases:
long term phase 1 keys, which in turn are used to

distribute shorter-term Phase 2 keys. GDOI makes
use of IKE Phase 1 only; GDOI can be thought of
as taking the place of IKE Phase 2 for groups.

The GROUPKEY-PULL protocol serves two pur-
poses: one is to distribute the current group key to
the member, the other to provide mutual authenti-
cation and authorization between the member and
GCKS. Furthermore, the latter purpose can be re-
alized in two ways:

(i) by using the Phase 1 key for authentication,
and storing the authorization information with
principal’s Phase 1 identity, where it can be
readily looked up,

(ii) by storing the authorization information in a
certificate that contains principal’s public key,
allowing it to be authenticated by a signature
with the corresponding private key.

In the latter case, known as the Proof of Possession
(PoP), it is not the purpose of a certificate, as usual,
to allow the verification of a signature, but it rather
it is the purpose of the signature to authenticate the
certificate. A principal uses the PoP to prove that
he possesses the key in the certificate by using it to
sign the other principal’s nonce.

An interesting feature of the above options, specified
in the GDOI RFC [3] is that the identity, contained
in the certificate in (ii), can be, and is expected
to be, different from the Phase 1 identity, used in
(i).1 Allowing multiple identities can be useful for
security associations, has been used in the recent
versions of IKE, envisioned for Phase 1 of GDOI,
and is not insecure in itself. In this case, however,
it does cause problems, as we shall soon see.

The GDOI message flows, relevant for our analy-
sis, are given below. The messages are passed along
a secure channel where authentication and secrecy
are provided by the key passed in Phase 1 IKE, and
which is identified by an IKE header and Message
ID. Since in this paper we are considering authenti-
cation issues alone, we do not specify the encryption
and identification functions explicitly. We also leave
off an optional Diffie-Hellman exchange, since it is
not relevant to our analysis of authentication prop-
erties of the protocol.

Let A be a group member and B a GCKS.
1This is explicit for the group member, and left open for

the GCKS.



(i) A → B : HAB(m, id),m, ID

Here, m is A’s nonce, id is the ID of the group,
and HBA denotes computation of a hash using
the Phase 1 key shared between A and B.

(ii) B → A : HBA(n, m, sa), n, sa

Here n is B’s nonce and sa stands for the secu-
rity association associated with the key. Note
that the hash keyed hash here is denoted HBA

instead of HAB . This is to reflect the require-
ment that the input to the hashes be formatted
in such a way that a message from an initia-
tor be distinguishable from a message from a
responder. This is not an issue for this spec-
ification, but will become so later for various
partial specifications of the protocol.

(iii) A → B : HAB(n, m,CA′
, SA′

(n, m)),
CA′

, SA′
(n, m).

Here CA′
denotes a certificate pertaining to A’s

new identity, A′. This certificate contains a
public key, and SA′

denotes a signature by the
corresponding private key.

(iv) B → A : HBA(n, m,CB′
, sq, k, SB′

(n, m)),
sq, k, SB′

(n, m)

Here k is the actual keying material, and sq
is a sequence number indicating the current
GROUPKEY-PUSH message.

We leave out irrelevant information where appro-
priate. For example, in our analysis of GDOI we
will usually leave out the inclusion of n in the hash
of the last message, since it does not contribute to
the analysis. We will also often leave out some or
all of the actual information (keying material and
sequence number) that is passed to the group mem-
ber.

3 Brief Overview of Challenge Re-
sponse Logic

The logic describes actions performed by agents.
Actions consist of sending, receiving, and rewriting
data, and generating random values. Agents con-
stitute processes in the underlying process calculus;
in this case, they can be construed as strands [12],
or as cords [?]. Roles and principals can then be
modeled as classes of agents, sharing data or infor-
mation: keys and names in the case of principals, or

actions in the case of roles. The other way around,
an agent may be thought of as a special instance of
a role, or of a principal.

The logic is built out of simple axioms describing
the conclusions that a principal can draw from her
observations of protocol actions, using the known
axioms. These axioms are usually of the form: “If
an agent performs certain sequence of actions, then
she can conclude that some other sequence of ac-
tions by other parties also occurred”. For instance,
if A receives a message, then she can conclude that
someone must have sent that message; if that mes-
sage contains a term that only B can form, then
she knows that B must have been on the path of
the message.

The notational conventions are as follows. A lan-
guage of terms t, which can be sent in messages, is
assumed to be given. It includes variables for un-
known terms or agents, and sufficient typing. The
expressions 〈t〉A, resp. (t)A, denote the statements
that the agent A has sent, resp. received the term
t. The expressions 〈〈t〉〉A resp. ((t))A, denote the
statements that A has sent, resp. received a message
containing t. An agent asserting such a containment
statement may not be able to extract t, but must
be able to establish its presence (e.g., as in the case
of hashing). When the source and the destination
of a message are relevant, we use the verbose forms
〈〈t : A → B〉〉C and ((t : A → B))C , where A and
B are respectively the purported source and desti-
nation fields. Like the the ”To” and the ”From”
fields, they can be spoofed, whereas the subscripts
C name the agent who actually performs the action.
A further convenient abbreviation is 〈〈t〉〉C<, which
means that C is the originator of the first message
containing t.2 In general, t may contain subterms
generated by others, yet 〈〈t〉〉C< asserts that no one
before C had sent t itself. The expression (νm) de-
scribes the generation of a fresh nonce m. As usually
in process calculus, it binds m to the right.

Atomic statements are generated over actions in one
of the following forms:

• a — “the action a has occurred”,

• a < b — “the action a has occurred before b”,
and

• a = b — “the actions a and b are identical”.
2Formally, 〈〈t〉〉C< abbreviates ∃c. c = 〈〈t〉〉C ∧ ∀b. b =

〈〈t〉〉B ⇒ b ≤ c.



The conditional precedance in the form ”if b occurs,
then a must have occurred before” is often used, so
we abbreviate it as

• a ≺ b ⇐⇒ b ⇒ a < b —

When authenticating each other, agents reason from
partial descriptions and unknown order of actions,
towards total descriptions and order. The names a
and b thus usually denote only partially determined
actions. Thus, for instance

• 〈t〉A < (x)Y — means that some action in the
form 〈t〉A precedes some action in the form
(x)Y ,

• a = 〈t〉A — means that the action denoted by
a must be in the form 〈t〉A; note that in the
same session there may be b 6= a with b = 〈t〉A;

• 〈U(t)〉A = 〈V (t)〉B , where U(t) and V (t) are
undetermined messages containing t — means
that U(t) = V (t) and A = B.

The state of each agent consists of what she has seen
and recorded. In principle, she only sees her own ac-
tions. She can thus record (some of) the terms that
she has sent, received, or computed, and the order of
actions that she has performed. At each new state,
an agent can draw new conclusions, applying the ax-
ioms, which constitute common knowledge, to the
data seen or recorded. Each such derivation thus
consists of three fields:

• “A sees:. . . ” — displaying A’s state,

• “A knows:. . . ” — displaying axioms and the
previously derived facts,

• “A concludes:. . . ” — displaying the new con-
clusions, following from the above.

We omit “sees”, “knows”, and “concludes” when-
ever confusion seems unlikely.

There are two basic axioms that express semantics
of actions. All principals are assumed to know them.

(t) =⇒ ∃a. a = 〈t〉 ∧ a < (t) (rcv)

(νm)M =⇒ ∀aA.
(
a = 〈〈m〉〉 ∨ a = ((m))

⇒ (νm) < a ∧ A 6= M

⇒ (νm)M < 〈〈m〉〉M <

((m))A ≤ aA

)
(new)

The (rcv) axiom says that if a message is received,
it must have been sent. The (new) axiom says that,
if a fresh value is generated, then any action involv-
ing that fresh value must occur after its generation;
moreover, if some principal other than the origina-
tor receives a message containing the fresh value,
then the originator of the value must have sent a
message containing it.

Axiom (cr) supports the reasoning of the initiator
of a challenge-response protocol. It is formalized as
follows:

A : (νm)A

(
〈〈cABm〉〉A < ((rABm))A

=⇒ 〈〈cABm〉〉A <

((cABm))B < 〈〈rABm〉〉B< <

((rABm))A

)
(cr)

The expression cABm denotes a challenge function
applied to m, while the expression rABm denotes a
response function applied to m. The axiom can be
viewed as a specification of the requirement defin-
ing these two functions. It tells that A can be sure
that if she issues a message containing a challenge
cABm, and receives response containing rABm, then
B must be the originator of that response. In other
words, B is the only agent who could have trans-
formed cABm to rABm, given the A’s own observed
actions.

In the various instances of axiom (cr), functions c
and r satisfying the above specification, can be im-
plemented in various ways, e.g. taking B’s signa-
ture as the response, or B’s public key encryption
as the challenge. In each case, it will need to be
proved that the particular implementation satisfies
the specified requirement.

The logic also contains axioms for composing, refin-
ing and transforming protocols. A transformation
or refinement usually adds a new property or func-
tionality to the protocol, in which case it comes an-
notated with an axiom, leading to new conclusions.
In authentication protocols, such axioms may ex-
pand principal’s knowledge about the events in the
run of the protocol that he is participating. For ex-
ample, in the basic challenge-response axiom there
is no indication that B intended its message as a
response to A’s particular challenge. This would
need to be supplied by some refinement introduc-
ing a specific integrity token, such as computing a
MAC.



While many formal details of our logical derivation
of GDOI will have to be omitted, the axioms and
the derivation steps do yield to a simple diagram-
matic presentation without an essential loss of pre-
cision or insight. As usually, messages are repre-
sented by horizontal arrows from one principal to
another. A vertical line corresponds to principal’s
internal change of state. If the principal creates a
new value m, this is represented by putting νm next
to the appropriate vertical line. Below, we describe
a derivation of a simple challenge and response pro-
tocol, which we use to form the core of GDOI.

There are several properties of protocols that will
be of interest here. One, known as matching histo-
ries, due to Diffie, van Oorschot, and Wiener [10],
says that after two principals complete a protocol
successfully, then they both should have the same
history of messages sent. Another, due to Lowe [15],
known as agreement, says that the principals should
agree not only about the message histories, but also
about the source and destination of each message.

Assumptions. A principal can be honest, and fol-
low the protocol, or dishonest, and perform arbi-
trary actions. However, it is assumed that neither
an honest nor a dishonest principal can compromise
the private data used to authenticate him. This
means that the response function in a challenge re-
sponse protocol cannot be delegated. One way to in-
terpret this is that the identity is reduced to posses-
sion of authenticating data: whoever has the data,
is recognized as a legitimate carrier of the identity.3

More innocently, the same assumption can be con-
strued as a simplifying convention, introduced to
avoid carrying explicit conditions in proofs; but they
can be added when needed.

We also tacitly assume strong typing. If a principal,
for example, attempts to use data of one type in
place of data of another type (e.g. a key in the place
of a nonce), this will be detected and the message
will be rejected. This again is a relatively strong
assumption, but has been shown, at least for one
formatting scheme, to lead to no loss of analytical
power, under certain reasonable provisos [14]). We

3For instance, no principal can pass his fingerprints or
handwriting to others. In cryptographic authentication, this
means that no agent can disclose the master keys, used to
authenticate him: they are strictly bound to his identity.
Finally, there are protocols for which such assumptions do
not lead to any loss of the ability to reason about security
(the “Machiavellian” protocols of Cervesato et al., [7]), but
we do not necessarily limit ourselves to these.

suspect these results could be extended to the sorts
of typing schemes used by real protocols such as
GDOI, and leave this as a problem for future work.

These assumptions are a matter of convenience,
which will undoubtedly be modified in future work.
For example, one of the properties of interest for
GDOI and many other protocols is perfect forward
secrecy, which describes the behavior of the protocol
after a master key is compromised.

4 Deriving Core GDOI

In this section we derive the conclusions the prin-
cipals can draw as a result of participating in Core
GDOI, without Proof of Possession. This is done
by first constructing a mutual hash-based challenge-
response protocol, and then inserting key distribu-
tion. For reasons of space, we will only give a de-
tailed presentation of the derivation of A’s conclu-
sions as the result of participating in the Hash-based
Challenge-Response, while giving a broad overview
of the rest. We hope that this is enough to give a
flavor of the logic.

4.1 Hash-based Challenge-Response

The derivation of GDOI begins with the basic pro-
tocol functionality, which is mutual authentication
through hash-based challenge-response. It is ob-
tained by composing and binding two copies of the
challenge-response protocol described above, with
the challenge and response functions instantiated

cABm = m

rABm = HBAm

Here, the hash HAB is axiomatized by

HABs = HABt =⇒ s = t (hash1)

〈〈HABt〉〉X< =⇒ X = A ∨X = B (hash2)

HABt = HBAt =⇒ A = B (hash3)

The idea is that HABm = h◦q(σAB , A, B, m), where
h is a given pseudorandom function, σAB a secret
shared by A and B, and q a convenient projection,
perhaps eliminating one of the identifiers. The ax-
ioms capture enough of this intended meaning, to



ensure that the above instantiation of cAB and rAB

validates axiom (cr), so that we can prove

A : (νm)A

(
〈〈m〉〉A < ((HABm))A

=⇒ 〈〈m〉〉A < ((m))B < 〈〈HABm〉〉B< <

((HABm))A

)
(crh)

where m denotes a term containing4 m. The proof
makes use of (rcv) to conclude, if the message
HABm was received, it must have been sent by
somebody, and (hash2) to conclude that the sender
must have been B. It then makes use of (new) to
conclude that m must have been created and sent
by A and received by B previous to B’s sending the
hash.

We now use (crh) to derive A’s conclusions.

A sees : (νm)A < 〈m〉A < (HBAm)A

knows (crh) : (νm)A

(
〈〈m〉〉A < ((HBAm))A

=⇒ 〈〈m〉〉A <
((m))B < 〈〈HBAm〉〉B< <

((HBAm))A

)
concludes : (νm)A < 〈m〉A <

((m))B < 〈〈HBAm〉〉B< <
(HBAm)A

In words, keyed hash can be used for ping authen-
tication.

But furthermore, it turns out that composing and
binding two copies of such hash-based authentica-
tion allows both principals to derive the exact order
of all of their joint actions, and thus arrive at match-
ing records of the conversation.

To derive this, we begin from the simple hash-based
challenge response, the first diagram in fig. 1. The
responder B learns little (only that someone has
sent a message), but A learns that B received her
challenge and responded to it. The second diagram
is obtained by sequential composition of two copies
of the first one. We only display the first copy. The
second one is symmetric, with B as the initiator
and A as responder. The conclusions that A and
B can draw are the union of the conclusions that
they could draw as initiator and responder of two
independent protocols: A knows that it receives a
response to B, and B knows that it received a re-
sponse from A, but they are not able to derive much

4Like before, the agent asserging containment may not be
able to extract m, but must be able to verify its presence.

more than that. The reasoning for A is as follows:

A sees : (νm)A < 〈m〉A < (n, HBAm)A <
〈HABn〉A

(crh) (νm)A

(
〈〈m〉〉A < ((HBAm))A

=⇒ 〈〈m〉〉A <
((m))B < 〈〈HBAm〉〉B< <

((HBAm))A

)
(rcv) (t) =⇒ ∃a. a = 〈t〉 ∧ a < (t)

A : (νm)A < 〈m〉A <
((m))B < 〈〈HBAm〉〉B< <
(n, HBAm)A < 〈HABn〉A ∧
∃Y. 〈〈n : B → A〉〉Y <

(n, HBAm : B → A)A

The third protocol is obtained by binding the two
one-way authentications by a simple protocol trans-
formation, introducing responder’s challenge into
his response. In the logic, this is accompanied by
the protocol specific definition of B’s honesty:

A : B honest ⇐⇒ (x)B ≺ (νy)B ≺
〈y, HBA(x, y)〉B ≺
(HABy)B

where A is an agent from the initiator role.

This axiom implies that, if A knows that any of
the above sequence of events have occurred, then A
knows that all of the preceding events must have
occurred as well, in the described order — provided
that B is honest, and acts according to the protocol.
The reasoning now proceeds as follows.

A sees : (νm)A < 〈m〉A <
(n, H(m,n))A < 〈Hn〉A

(crh) (νm)A

(
〈〈m〉〉A < ((Hm))A

=⇒ 〈〈m〉〉A <
((m))B < 〈〈Hm〉〉B< <

((Hm))A

)
(rcv) (t) =⇒ ∃a. a = 〈t〉 ∧ a < (t)
A : B honest ⇐⇒ (x)B ≺ (νy)B ≺

〈y, H(x, y)〉B ≺ (Hy)B

Just as in the one-way authentications, the conclu-
sion is

A (i) : (νm)A < 〈m〉A <
((m))B < 〈〈H(m,n)〉〉B< <
(n, H(m,n))A



A B

◦
νm ��
◦ m // ◦

◦ ◦
HBAm

oo

A B

◦
νm ��
◦ m // ◦

νn��
◦ ◦

n,HBAm

oo

◦
HABn

// ◦

A B

◦
νm ��
◦ m // ◦

νn��
◦ ◦

n,HBA(m,n)

oo

◦
HABn

// ◦

Figure 1: Hash-based Challenge-Response: from one-way to mutual authentication

On the other hand, from the honesty assumption

A (ii) : B honest ∧ 〈〈Hx〉〉B
=⇒ (x)B < (νy)B <
< 〈y, H(x, y)〉B< = 〈〈Hm〉〉B

where, as we recall, x denotes a term containing x.
Instantiating x = m and x = (m,n), we get the
antecedens that 〈〈H(m,n)〉〉B has occurred. The
consequens now tells that the action 〈〈H(m,n)〉〉B<

of (i) must be 〈y, H(m, y)〉B of (ii), with y fresh.
From axiom (hash1), A derives that n = y and thus

A : B honest =⇒ (νm)A < 〈m〉A <
(m)B < (νn)B < 〈n, HBA(m,n)〉B <
(n, HBA(m,n))A < 〈HABn〉A

By similar reasoning, B reaches the same con-
clusion, just extended by (HABn)B at the end.
The hash-based challenge-response thus yields the
matching conversations authentication.

In fact, with the same assumptions, A can derive
essentially more: not only that B has indeed sent
the response that she has received, and generated
the challenge that she has responded to — but also
that B has intended his response and his challenge
for her. More precisely, the above conclusion of A’s
can be extended by the desired source and destina-
tion of each message, A → B, or B → A. Indeed,
assuming that B is honest,

• he must have received (m : A → B)B , be-
cause he would never form HBA(m . . .) other-
wise, and then

• he must have generated fresh n and sent
〈n, HBA(m,n) : B → A〉B , again because the
protocol and his honesty say so.

Formalizing this, A can first prove that the above
definition of B’s honesty is equivalent to a stronger
formula:

A : B honest ⇐⇒ (x : A → B)B ≺ (νy)B ≺
〈y, HBA(x, y) : B → A〉B ≺
(HABy : A → B)B

and then strengthen the rest of her reasoning. Mu-
tatis mutandis, the same holds for B. The princi-
pals thus agree not only about the order of their
joint actions, but also about the intended sources
and destinations of their messages, and about each
other’s identity. This stronger form of authentica-
tion is called agreement in Lowe’s hierarchy [15].

While matching conversations authentication suf-
fices for some purposes, we shall see in the sequel
how it can lead to misidentification even in combi-
nation with agreement.

4.2 Towards GDOI: Hash-based au-
thenticated key distribution

Towards authenticated key distribution, the hash-
based mutual authentication protocol should now
be composed with the hash-based key distribution
protocol, identifying initiator’s nonces used in the
two components.

In the first diagram in fig. 2, we start with a proto-
col pattern in which hash-based challenge-response
is used to guarantee authentication of a key (or any
other piece of data). As a result of this protocol,
A can conclude that B sent the key in response to
her challenge. In the second diagram, we compose
the key distribution with the challenge-response di-
agram from fig. 1. Now A can conclude that B
has responded to her challenge with challenge of his



A B

◦
νx ��
◦ x // ◦

νk

��
◦ ◦

k,HBA(k,x)

oo

A B

◦
νm ��
◦ m // ◦

νn��
◦ ◦

n,HBA(m,n)

oo

◦
HABn

// ◦
νk��

◦ ◦
k,HBA(m,k)

oo

A B

◦
νm ��
◦ m,HABm // ◦

νn��
◦ ◦

n,HBA(m,n)

oo

◦
HABn

// ◦
νk��

◦ ◦
k,HBA(m,k)

oo

Figure 2: Composition with hash-based key distribution

own, and later with a key. B can conclude that A
was still participating in the protocol at the time he
received the challenge (that is, that the first mes-
sage that it received from A was not a replay). The
last diagram in fig. 2 is a simple refinement that
authenticates the initial challenge5. This step is in-
dependent of the other steps, and can been intro-
duced at any point in the derivation. In any case,
it is not hard to prove that the authenticity proper-
ties, achieved in the hash-based challenge response,
are preserved under the last two derivation steps.
The same messages that appear in the hash-based
challenge response also appear in the hash-based key
distribution in the same order. Thus the same proof
strategy that worked before works again.

Since the distributed key is also authenticated by
hash, the resulting protocol — the core of GDOI
— thus realizes the agreement authentication again.
This means that each principal can exactly derive
the order of all actions (except that the sender of the
very last message cannot know that it is received)
— including the correct source and the intended
destination of each message.

5 Adding second authentication

In this section we describe the second way of au-
thorizing group membership and leadership. This is
done by passing a signed public key certificate with
a new identity and additional authorizations. This
can be done for either the group member, or the
GCKS, or both. A principal is intended to prove
possession of the private key corresponding to the

5Omitting this would expose B to a denial-of-service.

public key contained in the certificate by using it to
sign the two nonces. Thus we can think of GDOI
with proof-of-possession (PoP) as the composition
of two protocols: the core GDOI protocol and the
PoP protocol.

5.1 Towards PoP: Signature-based
Challenge-Response

Besides by keyed hashes, the abstract challenge
response template from axiom (cr) can be imple-
mented using signatures:

cABm = m

rABm = CB , SBm

where SB is B’s signature, axiomatized by

SBt = SBu =⇒ t = u (sig1)

〈〈SBt〉〉X< =⇒ X = B (sig2)

V B(y, t) ⇐⇒ y = SBt (sig3)

whereas CB is B’s certificate, with her identity
bound to the signature verification algorithm V B ,
and possibly containing additional authorization
payload, used in GDOI. As usually, the integrity
of this binding is assured by certifying authority.

The derivation proceeds similarly as for the hash-
based authentication. The difference is that the sec-
ond diagram in fig. 3 is a nested composition of two
copies of the first, rather than a sequential compo-
sition, as in fig. 1. We only display the inner copy,
while the outer one is symmetric, with A as the ini-
tiator, and B as responder. Like before, the third
diagram is obtained by binding transformations, i.e.



A B

◦
νn��

◦ ◦noo

◦ CA, SAn // ◦

A B

◦
νm ��
◦ m // ◦

νn��
◦ ◦noo

◦ CA, SAn // ◦

◦ ◦
CB , SBm

oo

A B

◦
νm ��
◦ m // ◦

νn��
◦ ◦noo

◦
CA, SA(m,n)// ◦

◦ ◦
CB , SB(m,n)

oo

Figure 3: Signature-based Challenge-Response: from one-way to mutual authentication

introducing each principal’s own challenge into his
response. The result is what we call the PoP proto-
col.

Properties and attacks

The proof of the matching conversation authenticity
for the signature-based challenge response protocol
closely follows the proof for the hash-based proto-
col, presented in sec. 4.1. However, while that proof
readily extends to a proof of agreement, by extend-
ing the messages by A → B and B → A, this one
does not.

The reason is that the messages in the hash-based
protocol carry enough information to ensure that
an honest principal, say A, will send the mes-
sages to the correct destination B —whereas in the
signature-based protocol they do not. More con-
cretely, in the hash-based protocol, the assertion
that A is honest and sends and receives the mes-
sages in correct order implies, as we have seen, that
the sources and the destinations of the messages are
also correct. In the simplest signature-based chal-
lenge response protocol, B’s assumption that A is
honest

B : A honest ⇐⇒ (n)A ≺ 〈〈CA, SAn〉〉A

cannot be extended to 〈CA, SAn : A → B〉A. While
the response HABn must be for B if A is honest,
the response CA, SAn does not tell who A may have
intended it for, honestly or not.

The signature-based challenge response protocols
thus realize matching conversations authentication,
but they do not realize agreement, and do allow

identity confusion. Indeed, by spoofing the source
of B’s challenge, and the destination of A’s response,
an intruder I can convince B that he has authen-
ticated a, while A believes that she has been au-
thenticated by I, and knows nothing of B. This is
illustrated in in the first diagram in fig. 4. This
attack validates e.g. the following statement

B : A honest =⇒ (νn)B < 〈n〉B <
(n)A < 〈CA, SAn〉A <
(CA, SAn)B

∧¬
(
B : A honest =⇒ 〈CA, SAn : B → A〉A

)
which shows that it cannot validate agreement au-
thentication.

Now recall the derivation pattern displayed in fig.
3, used to derive a mutual authentication protocol
by nested composition and binding of two copies of
one way authentication. Applying this derivation
pattern not to the one way authentication protocol
itself, but to the attack on it — yields an attack to
the resulting mutual authentication protocol. This
attack is illustrated in the second diagram of fig. 4.
A formula contradicting the agreement authentica-
tion, but asserting the matching conversation can
be extracted just as above.

To remove the attacks, one would need to provide
grounds for the reasoning pattern that led to es-
tablishing the agreement authentication in sec. 4.1.
Like there, the response function should thus be ex-
tended by peer’s information, which would allow the
extending honesty assertion by the source and des-
tination fields. When anonymity of the initiator is
not required, this can be achieved by taking

rABm = CB , SB(A,m)



A I B

◦
νn��

◦ ◦
n:B→A

oo

◦ ◦
n:I→A

oo

◦
CA, SAn:A→I

// ◦

◦ CA, SAn:A→B // ◦

A I B

◦
νm ��
◦ m:A→I // ◦

◦ m:A→B // ◦
νn��

◦ ◦
n:B→A

oo

◦ ◦n:I→Aoo

◦
CA, SA(m,n):A→I

// ◦

◦
CA, SA(m,n):A→B// ◦

◦ ◦
CB , SB(m,n):B→A

oo

Figure 4: Attacks Against Signature-Based Challenge-Response

5.2 Composing core GDOI with the
PoP option

We are now ready to compose core GDOI, derived
in sec. 4, with the PoP protocol, derived above.
This is shown in fig. 5, where we abbreviate ΣX =
SX(m,n).

In the first diagram, we compose the hash-based
protocol from sec. 4.2 with the signature-based pro-
tocol from sec. 5.1, identifying the fresh data. In the
second diagram, we bind the two components using
hashes. Note that the principal A claims both A
and A′ as her identities: one as the source field of
her message, the other through the certificate, which
she proves as hers by the signature. The principal
B similarly claims both B and B′.

6 Attacks on GDOI with PoP and its
defenses

When we attempted to prove the security of the
composition of the core GDOI and POP, we found
that we had no way of doing so. This was because,
since the two protocols used two different identi-
ties, there was no way of using the propositions we
could prove about GDOI and POP to prove any
results about their composition. Closer examina-
tion showed that this was not the results of any

deficiency in the logic; rather it was the result of
an actual deficiency in the protocol, which we were
able to demonstrate by finding a man-in-the-middle
attack.

Subsequently, we found something even more inter-
esting: it is possible to use the compositional logic
as a means of deriving attacks on compositions of
protocols. This can be done in two ways. The first
method works in the case in which there is an at-
tack on one of the component protocols. One spec-
ifies that attack as if it were a logical proposition.
One then attempts to compose the attack with the
propositions governing the other protocol, although
in this case one attempts to discover what state-
ments can be formed from the composition, rather
than just the ones that are necessarily implied by
it. If one of the statements describes an attack on
the protocols, then we have pinpointed the problem.
The second way can work even if there are no at-
tacks on the component protocols. One attempts
to form statements using the propositions proved
about both protocols. Again, if one of the state-
ments describes an attack, then we have pinpointed
a problem arising from the emergent behavior of the
composition. In this section we will show how both
methods of deriving attacks can be used to derive
attacks on the composition of core GDOI and POP.



A B

◦
νm ��
◦ m,HABm:A→B // ◦

νn��
◦ ◦

n,HBA(m,n):B→A

oo

◦
HABn, CA′

, ΣA′
: A→B

// ◦
νk��

◦ ◦
k,HBA(m,k), CB′

, ΣB′
: B→A

oo

A B

◦
νm ��
◦ m,HABm: A→B // ◦

νn��
◦ ◦

n,HBA(m,n): B→A

oo

◦
HAB

“
n,CA′

,ΣA′ ”
,CA′

,ΣA′
:A→B

// ◦
νk��

◦ ◦
k,HBA

“
m,k,CB′

, ΣB′ ”
, CB′

,ΣB′
:B→A

oo

Figure 5: Composition of Core GDOI with PoP

6.1 Lifting the attack from PoP

We recall from fig. 4 that there is an attack on
the PoP protocol that allows the responder to be
confused about who the initiator is actually trying
to initiate contact with. We can obtain this attack
with the specification of the core GDOI protocol in
sec. 4.2 — in the same way as the protocol in sec.
5.1 was composed the one in with sec. 4.2, to yield
GDOI. This is illustrated in fig. 6. We compose
two copies of the GDOI protocol, one between A
as initiator and I as responder, and the other be-
tween I as initiator and B as responder, with a copy
of the attack on the signature protocol in sec. 5.1,
in which I claims to B that A′ is his identity, and
proves this by certificate and signature. The nota-
tion XA′ refers to the fact that the agent X claims
the identity of A′ (in this case by proving posses-
sion of the certificate belonging with this identity).
The upshot of this attack is that a rogue GCKS I,
who does not have the credentials to join the group
managed by GCKS B, could hijack the credentials
belonging to A under identity A′ that she presents
to I when joining I’s group.

A solution? The simplest way to eliminate this
composition is to eliminate the attack in fig. 4,
i.e. to strengthen the signature-based authentica-
tion from matching conversations to agreement. As
pointed out in sec. 5.1, this can be done by in-
troducing the peer’s identity under the signature,
responding to the challenge, i.e. to replace ΣA′

by

ΣA′

B′ = SA′
(B′,m, n)

We do the same for ΣB′
. However, as we shall see,

in this case eliminating the attack on the component

protocol is not enough to solve the problem.

6.2 Emergent attack

Even if the PoP protocol is modified as recom-
mended in the previous section, so that there are
no attacks on the components, an attack can still
emerge in composition. To see how this happens,
consider the modified version of GDOI with PoP,
where ΣA′

is replaced by ΣA′

B′ , and ΣB′
by ΣB′

A′ . In
order to allow A′ to introduce the identity B′ under
her signature in the third message, this transforma-
tion must be enabled by moving the certificate CB′

from the last message to the second one. The attack
that nevertheless arises is presented in fig. 7.

The attack still allows a correct hash-based mutual
authentication between A and I (obtained by re-
moving certificates and signatures), and a correct
signature-based mutual authentication between A′

and B′ (obtained by removing hashes) yet putting
these two authentications together leaves A believ-
ing that the identifiers I and B′ belong to the same
principal, and B believing that the identifiers I and
A′ belong to the same principal.

Suggested solution A solution to this problem
that we are currently discussing with the designers
of GDOI is to use in the protocol in fig. 5

ΣA′

AB = SA′
(σAB ,m, n)

instead of ΣA′
= SA′

(m,n), and symmetrically ΣB′

AB

instead of ΣB′
. As before, σAB is the shared secret,

generated in Phase 1, and used for keying the hashes
HAB and HBA (as explained in sec 4.1). Other



A I B

◦
νm ��
◦ m,HAIm : A→I // ◦

◦ m,HIBm : I→B // ◦
νn��

◦ ◦
n,HBI(m,n) : B→I

oo

◦ ◦
n,HIA(m,n) : I→Aoo

◦
HAI

“
n,CA′

, ΣA′ ”
, CA′

, ΣA′
: AA′→I

// ◦

◦
HIB

“
n,CA′

, ΣA′ ”
, CA′

, SA′
: IA′→B

// ◦
νk��

◦ ◦
k,HBI

“
m,k,CB′

, ΣB′ ”
, CB′

, ΣB′
: BB′→IA′

oo

Figure 6: Lifted attack on GDOI with PoP

A I B

◦
νm ��
◦ m,HAIm:A→I // ◦

◦ m,HIBm:I→B // ◦
νn��

◦ ◦
n,HBI(m,n,CB′

), CB′
:BB′→I

oo

◦ ◦
n,HIA(m,n,CB′

), CB′
:IB′→Aoo

◦
HAI

“
n,CA′

, ΣA′
B′

”
, CA′

, ΣA′
B′ :AA′→IB′

// ◦

◦
HIB

“
n,CA′

, ΣA′
B′

”
, CA′

, ΣA′
B′ :IA′→BB′

// ◦
νk��

◦ ◦
k,HBI

“
m,k,ΣB′

A′

”
, ΣB′

A′ :BB′→IA′

oo

Figure 7: Emergent Attack on modified GDOI



identifying information, such as A’s Phase 1 iden-
tity, could be used in place of σAB ,

The security argument, from B’s point of view, boils
down to proving that, if either A or A′ is honest,
then A = A′. If A′ is honest, then she will only sign
the σAB belonging to her, so B can conclude that
A′ = A. On the other hand, if A is honest, then,
since ΣA′

AB appears in a hash computed with A’s
key σAB , B can conclude that A would only have
included the signature if she herself had produced it
using the private key of A′. Therefore, B can again
conclude that A = A′. A similar proof works for A’s
conclusions about B and B′.

One thing that B cannot conclude is that A = A′

if both A and A′ are dishonest, even if A and A′

are not willing to share their long-term keys with
each other. Indeed, we can produce a counterex-
ample by refining our definition of digital signature.
Note that in our axiomitization of digital signature,
we assume message recovery is not allowed. One
refinement of this assumption, and indeed a recom-
mended one, is to take a one-way hash over data
before signing it. If that is so, then A can sim-
ply pass the hash of (σAB ,m, n) to A′ to sign with-
out revealing any information about its long-term
key. After A′ computes the signature, she can pass
ΣA′

AB = SA′
(σAB ,m, n) to A, who can then include

it in her hashed message. Even if we could avoid
this instance of collusion by signing without hash-
ing, it is not considered cryptographically sound to
do so, and would probably open up more risks than
the one offered by collusion (which could probably
be accomplished by other means). We consider the
problem of preventing collusion in this case as an
open one.

7 Conclusion

In this paper we described some of the features of
a logic for cryptographic protocol analysis that we
are developing. The logic is designed to be composi-
tional, so that one can prove results of components
separately, and then compose them. It is also de-
signed to facilitate incremental analysis. With some
modifications, the logic also has the potential of be-
ing used to find attacks on protocols. We showed
how this logic was used to discover a compositional
flaw in the GDOI group key exchange protocol, how
it also could be used to discover attacks directly, and

various ways in which the protocol could be fixed
and proved correct. We are currently discussing the
best way of solving this problem with the GDOI
authors and the Msec working group.

One might ask, how could this problem happen in
the first place, since GDOI had already undergone a
formal analysis with another tool, the NRL Proto-
col Analyzer? Indeed, the flaw that we found is very
much of the type that the NPA can find. The an-
swer is that the fact that certificate identities could
be different from Phase 1 identities was missed by
the authors of [17] when they were eliciting require-
ments. But, even if it had been caught, it would
have not been trivial to go back and reverify the
protocol with the NPA. With the derivational ap-
proach, we are able to verify only the parts that
had changed.

Indeed, we note also that the approach of this logic
addresses a growing problem in the design of crypto-
graphic protocols: the problem of securely compos-
ing two or more different protocols. As Asokan et
al. point out in [1], deploying a new protocol is ex-
pensive, and there is considerable pressure to reuse
security protocols and security context databases
by composing them with other protocols. However,
the problem of securely reusing these protocols by
in new contexts is not well understood. Indeed, a
man-in-the middle attack of the sort described in
[1] was found on the IETF’s Extendible Authenti-
cation Protocol [4], and has much in common with
the attack we found on Proof of Possession. Thus
our methodology has the potential of being of great
use in the study of secure protocol reuse.

In conclusion, we believe that our approach of-
fers the possibility of greatly facilitating the formal
methods to cryptographic protocol analysis. Not
only should it be possible to provide a complete ver-
ification of a protocol at one stage of its life, but to
reverify the protocol as modifications are suggested
and incorporated. Moreover, it facilitates the study
of the growing problem of composition of protocols
and protocol reuse. We believe that should increase
enormously the role that formal methods can play
in assisting the development of protocol standards.
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