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Abstract

We introduce a basic framework for deriving security
protocols from simple components, like proofs are derived
from axioms. As an initial case study, we derive the re-
cently proposed key agreement protocol JFK (Just Fast Key-
ing), starting from the basic Diffie-Hellman exchange, and
the generic challenge-response scheme, and refining them
by the other required security features, formalized in our
derivation system by suitable refinement and transforma-
tion rules.

1. Introduction

JFK [1] is a protocol recently proposed to replace IKE
[2] as the standard key exchange protocol for the IPSec pro-
tocol suite. It has been recognized that IKE suffers from a
number of deficiencies, the three most important being that
the number of rounds is high, that it is vulnerable to denial-
of-service attacks, and the complexity of its specification.
Besides providing a means for authenticated key exchange,
JFK has been engineered with the specific design goal of
removing these deficiencies.
In this paper, we present a formal analysis of the JFK

protocol. The goal has been to verify whether JFK satisfies
all its stated design goals. Towards this end, we have devel-
oped a “rational reconstruction” of the core JFK protocol.
The Diffie-Hellman key exchange protocol [14] and a sim-
plified version of the standard challenge-response authenti-
cation protocol [15] constitute the starting point of the re-
construction. We compose these two protocols to obtain the
first approximation of an authenticated key exchange pro-
tocol. This protocol is then systematically transformed into
one that provides DoS protection. We then progressively re-
fine the obtained protocol by adding message components,
finally culminating in a protocol that is a close approxima-
tion of the actual JFK protocol. At each refinement step,
we clearly explain what purpose is served by that message
component and/or what attack would arise if it were not exe-
cuted. We believe that this reconstruction provides a natural
way to understand how the message components of the pro-
tocol serve to meet the stated design goals: security, identity

protection, DoS protection, etc.
The remainder of this paper is structured as follows. Sec-

tion describes the the design goals of the JFK protocol.
Section discusses the protocol itself and the role served by
the different message components. In Section , we present
a systematic reconstruction of the core JFK protocol using
compositions, refinements and transformations. Section
presents a protocol transformation technique which adds
DoS protection to the base protocol. Concluding remarks
and directions for future work appear in Section .

2. Design Goals

The JFK protocol was designed to meet the following
requirements:

Security: The resulting key should be cryptographi-
cally secure, according to standard measures of cryp-
tographic security for key-exchange.

Simplicity: It must be as simple as possible.

Memory-DoS: It must resist memory exhaustion at-
tacks on the responder.

Computation-DoS: It must resist CPU exhaustion at-
tacks on the responder.

Privacy: It must preserve the privacy of the initiator.

Efficiency: It must be efficient with respect to compu-
tation, bandwidth, and number of rounds.

Non-Negotiated: It must avoid complex negotiations
over capabilities.

PFS: It must approach perfect forward secrecy.

The Security property is obvious enough; the rest, how-
ever, require some discussion.
The Simplicity property is motivated by several factors.

Efficiency is one; increased likelihood of correctness is an-
other. But the main motivation is to avoid the complexity of
IKE. This complexity has led to interoperability problems,
so much so that, several years after its initial adoption by

1



the IETF, there are still completely non-interoperating im-
plementations.

The Memory-DoS and Computation-DoS properties
have become more important in the context of recent In-
ternet denial-of-service attacks. Photuris [21] was the
first published key management protocol for which DoS-
resistance was a design consideration. Photuris first intro-
duced the concept of cookies to counter “blind” denial of
service attacks. Although the concept of the cookie was
adopted by IKE, its use in that protocol did not follow the
guidelines established by Photuris and left it open to DoS
attacks.

The Privacy property means that the protocol does not
reveal the identities of the parties to an attacker. There are
several variants here: First, the protection can cover the ini-
tiator, or the responder or both. Second, the protection can
be valid either against active attackers or alternatively only
against passive eavesdroppers. The basic JFK protocol pro-
vides identity protection for the initiator against active at-
tacks, and no protection for the responder.

The Efficiency property is worth discussing. In many
protocols, key setup must be performed frequently enough
that it can become a bottleneck to communication. The key
exchange protocol must minimize both computation as well
total bandwidth and round trips. Round trips can be an es-
pecially important factor over unreliable media.

The Non-Negotiation property is necessary for several
reasons. The first, of course, is as a corollary to Simplicity
and Efficiency. Negotiations create complexity and round
trips, and hence should be avoided. Denial of service re-
sistance is also relevant here; a partially-negotiated security
association is consuming resources.

Perfect Forward Secrecy (PFS) is treated differently
from other protocols. The amount of forward secrecy is
treated as an engineering parameter that can be traded off
against other necessary functions, such as resistance to
denial-of-service attacks. JFK has the concept of a “for-
ward secrecy interval”; associations are protected against
compromises that occur outside of that interval.

3. The JFK Protocol

3.1 Notation

The following notation is used in describing the protocol.

Message from to
Encryption of with symmetric key
Keyed hash (HMAC) of using key
Signature of on message M
Diffie-Hellman (DH) exponentials
Random nonce
Initiator desired Security Association
Responder’s IPSec SPI
Responder’s transient private hash key
Encryption key:
Session key:
Public key certificate of
Responder supported DH groups

3.2 Protocol Description

The JFK protocol is shown in Figure . Message is
straightforward; note that it assumes that the Initiator al-
ready knows a group and generator that is acceptable to the
Responder. The Initiator can reuse a value in multiple in-
stances of the protocol with the Responder or other respon-
ders that accept the same group, for as long as she wishes
her forward secrecy interval to be. This message also con-
tains an indication as to which the Initiator would like
the Responder to use to authenticate.
Message is more complex. Assuming that the Respon-

der accepts the Diffie-Hellman group in the Initiator’s mes-
sage, he replies with a signed copy of his own exponential
(in the same group), information on what secret key algo-
rithms are acceptable for the next message, a random nonce,
his identity (certificates or a bit-string identifying his pub-
lic key), and an authenticator calculated from a secret, HKr,
known to the Responder; the authenticator is computed over
the two exponentials and nonces, and the Initiator’s network
address. The authenticator key is changed at least as often
as , thus preventing replays of stale data. The Respon-
der’s exponential may also be reused; again, it is regener-
ated according to the Responder’s forward secrecy interval.
The signature on the exponential needs to be calculated at
the same rate as the Responder’s forward secrecy interval
(when the exponential itself changes). Finally, note that the
Responder does not need to generate any state at this point,
and the only “expensive” operation is a MAC calculation.
This is meant to ensure that the Responder is not open to
denial-service attacks.
Message echoes back the data sent by the Respon-

der, including the authenticator. The authenticator is used
by the Responder to verify the authenticity of the returned
data. The authenticator also confirms that the sender of
Message uses the same address as in Message : this can
be used to detect and counter a “cookie jar” DDoS attack.
The message also includes the Initiator’s identity and ser-
vice request, and a signature computed over the nonces, the
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Figure 1. JFK Protocol

Responder’s identity, and the two exponentials. This lat-
ter information is all encrypted under a key derived from
the Diffie-Hellman computation and the nonces and .
The encryption and authentication use algorithms specified
in . The Responder keeps a copy of recently-
received Message ’s, and their corresponding Message .
Receiving a duplicate (or replayed) Message causes the
Responder to simply retransmit the correspondingMessage
, without creating new state or invoking IPsec. This cache
of messages can be reset as soon as or are changed.
The Responder’s exponential ( ) is re-sent by the Initiator
because the Responder may be generating a new for ev-
ery new JFK protocol run (e.g., if the arrival rate of requests
is below some threshold).
Note that the signature is protected by the encryption.

This is necessary, since everything signed is public except
the sa, and that is often guessable. An attacker could verify
guesses at identities, were it not encrypted.
Message contains application-specific information

(such as the Responder’s IPsec SPI), and a signature on both
nonces, both exponentials, and the Initiator’s identity. Ev-
erything is encrypted by , which is derived from
and (the result of the Diffie-Hellman computation).

4. Reconstructing JFK

In this section, we reconstruct JFK by applying refine-
ments and transformations to a protocol obtained by com-
posing the Diffie-Hellman key exchange protocol with the
standard challenge-response based authentication protocol.
A refinement replaces every instance of a message compo-
nent used in the protocol by another. In this sense, it is a
local operation, somewhat like the find-and-replace opera-
tion in a text editor which substitutes every instance of a
given pattern by another. On the other hand, a transforma-
tion involves a series of steps and operates on the protocol
as a whole. In particular, we describe a transformation that
adds “cookies” to the base protocol to make it resistant to
DoS attacks. This reconstruction provides a natural way
to understand how the message components of the proto-
col serve to meet the stated design goals: security, identity

protection, DoS protection, etc.

1. Components:

(a) Diffie-Hellman key exchange: The basic Diffie-
Hellman protocol [14] is shown below. It pro-
vides a way for two parties to set up a shared
key ( ) which a passive eavesdropper cannot
recover. The security of the key depends on the
computational hardness of the discrete logarithm
problem.

:

:

(b) Challenge-response: The signature-based
challenge-response protocol shown below is
a standard mechanism for providing mutual
authentication (see Section 10.3.3 of [15]).

:

:

:

2. Transformations:

(a) The “cookie transformation” is discussed in de-
tail in the next section. At the cost of adding an
extra message to the base protocol, it guarantees
that the Responder does not have to create state or
perform expensive computation before a round-
trip communication is established with the Initia-
tor. This helps protect the Responder against both
Computation-DoS and Memory-DoS attacks.

(b) The second transformation rule allows a field of
message to be moved to an earlier message

( ) with the same sender and receiver,
provided does not contain any data freshly gen-
erated between the two messages. Additional
side conditions could be imposed to ensure se-
crecy requirements on .



3. Refinements:
In what follows, we use to denote that should
replace every instance of in the protocol once that
refinement is applied.

(a) , where de-
notes encryption under some shared key. This
refinement is necessary for identity protection.
Since everything signed is public except the ,
and that is often guessable, an attacker could ver-
ify guesses at identities if the signature was not
encrypted. In JFK, a shared key derived from the
Diffie-Hellman secret and the two nonces is used
for encryption.

(b) , where
denotes the public-key certificate of . Since
the other party may not possess the signature-
verification key, it is necessary to include the cer-
tificate along with the signature.

(c) , where Y is the
peer’s identity. A side condition here is that
possesses the requisite identifying information
for , e.g., public key certificate, before the
protocol is executed. This condition can be re-
moved if receives identity in an earlier
message of the protocol. In public-key based
challenge-response protocols, the authenticator
should identify both the sender and the intended
recipient. Otherwise, the protocol is susceptible
to a person-in-the-middle-attack. Here, the sig-
nature identifies the sender and the identity inside
the signature identifies the intended recipient. In
an encryption-based challenge-response protocol
(e.g., Needham-Schroeder [23]), since the pub-
lic encryption key identifies the intended recipi-
ent, the sender’s identity needs to be included in-
side the encryption. The original protocol did not
do so and the bug was discovered nearly twenty
years later by Lowe [24].

(d) , where is a random nonce
generated by the same entity which generated .
The nonce is a fresh random value and allows
Diffie-Hellman exponentials to be reused across
multiple protocol runs.

Note that refinements (b) and (c) are included as part of
the base challenge-response protocol in [15] (Section
10.3.3). We present them separately here in order to
clearly explain their significance.

We will now present a step-by-step reconstruction of the
core JFK protocol using these components, transformations
and refinements.

Step 1: Compose components (a) and (b) above by
substituting for and for in (b). The resulting
protocol is shown below.

:

:

:

Step 2: Apply the “cookie transformation” to the pro-
tocol obtained from Step 1.

:

:

:

:

Step 3: Apply refinement (a) to the protocol obtained
from Step 2 using as the encryption key.

:

:

:

:

Step 4: Apply refinement (b) to the protocol obtained
from Step 3.

:

:

:

:

Step 5: Apply transformation (b) to move the field
from message 4 to message 2.



:

:

:

:

Step 6: Apply refinement (c) to messages 3 and 4 of
the protocol obtained from Step 4. Note that the side
condition for applying this rule to message 3, whereby
needs to know peer’s identity before she signs

it, is satisfied after step 5. The side condition for ap-
plying it to message 4 is also satisfied, because is
introduced in message 4.

:

:

:

:

Step 7: Apply refinement (d) to the protocol obtained
from Step 6.

:

:

:

:

The protocol obtained from Step 7 represents the core
JFK protocol. For ease of exposition, we have ignored some
message components, viz.

. This version has the following desirable properties:
security, identity protection (for initiator against passive at-
tackers only), computation DoS protection, memory DoS
protection, and ”almost” perfect forward secrecy. Since

is not included in message 2, this protocol does
not provide identity protection for the initiator against ac-
tive attackers. Extending the composition-refinement based
framework to obtain a reconstruction of the complete JFK
protocol would be an interesting challenge.

5. The “Cookie” Transformation

In this section, we describe the “cookie transformation”:
a mechanism that makes a protocol resistant to DoS attacks.
The goal is to describe a transformation that systematically
transforms the protocol in Step 1 of the previous section into
the protocol obtained in Step 2. We will do this in stages.
First we describe two transformationswhich separately pro-
vide protection against computation DoS and memory DoS
attacks. We then compose these to obtain the desired trans-
formation.

5.1 Protocol Description Notation

We use an extension of the strand space notation [25],
inspired by [4] to explicitly denote what constitutes a com-
putation DoS/ memory DoS attack. Here, we explain the
notation with a simple example. Consider the following -
step protocol from Step 1 of the previous section:

:

:

:

The representation of this protocol in the extended strand
space notation is shown in Figure . The horizontal arrows
denote messages exchanged during the protocol. The views
of both the participants are explicitly shown. For example,
in the first message, since generates , it is shown as such
in ’s view. But as far as is concerned, it is just a random
number. has no way of verifying that it is of the form
since that would involve computing discrete logarithm. So,
it is denoted by . A similar reasoning applies to and
in the second message. Since knows that the second

component of message 2 is ’s signature and can verify it,
it is explicitly shown as a signature. Similarly, signatures
are shown as such in message 3.
Vertical arrows are used to denote state changes upon

sending and receiving messages. We distinguish between
dashed vertical arrows (which denote internal computation
involved in processing a received message) and solid verti-
cal arrows (which denote waiting-for-message phases). Be-
side a solid vertical arrow, we specify the parameters saved
in the local state at that point. For example, after sending
message 2, saves , in its local state till it receives mes-
sage 3. The dashed vertical arrows denote possible sites for
Computational DoS attacks while the solid vertical arrows
denote possible sites for Memory DoS attacks. We label a
single vertical arrow if it requires the participant to per-
form computationally expensive operations.



Figure 2. Example

5.2 The Transformation

1. CDoS protection:
The idea is to establish round-trip communication with
before performing expensive operations. sends

some fresh data to which can be generated without
performing expensive operations. has to return that
piece of data back to complete the round-trip. Fresh-
ness is required for replay protection. In the notation
defined in the previous section, the first dashed vertical
arrow on ’s side should not contain .
The transformation is shown in Figure 3. Here
is the fresh data. denotes the piece of informa-
tion using which can be reconstructed from .
Computation of should be inexpensive.
and denote respectively the components of

that do not require/require expensive operations;
here, (since Diffie-Hellman expo-
nentials are reused) and .

2. MDoS protection:
The idea is that should not save state before round-
trip communication is established with . Instead she
should send out an unforgeable ”token” that captures
the state and which can be used later to reconstruct the
state. should send back this token in the next mes-

sage. For example, a keyed hash of the DH exponen-
tials serves this purpose in JFK. The transformation is
shown in Figure 4. Here corresponds to the tuple

. The goal here is to ensure that the first solid
vertical arrow on ’s side should not contain state in-
formation (beyond which is reused across mul-
tiple sessions and need not be counted as part of local
session state).

3. CDoS and MDoS protection:
We compose the transformations of Figure 3 and Fig-
ure 4 by applying the following rules:

(a) Set and .
(b) Take union of components of correspondingmes-

sages.
(c) Preserve computation constraints on dashed ver-

tical arrows.
(d) Preserve message ordering for each participant.
(e) Do not repeat message components which are al-

ready known.

The resulting -message protocol is shown in Figure 5.
Components in square brackets denote parameters that
are reused across multiple sessions and hence need not
be counted as part of local session state. Note that this



Figure 3. CDoS Protection Transformation

Figure 4. MDoS Protection Transformation



Figure 5. DoS Protection Transformation



protocol is resistant to both blind computationDoS and
memory DoS attacks. It is possible to reduce the num-
ber of messages by applying the following rule. Start
from the last message. If all components are com-
putable when the previous message was sent by this
participant, then move these components to the previ-
ous message, eliminate this message and iterate. (It
is necessary to check that computation constraints are
not violated before performing this step.) This is es-
sentially the same rule as transformation (b) in the
previous section. We can apply this rule to the proto-
col of Figure 5 to eliminate message 5 and move the
signature to message 3. Further iteration cannot pro-
ceed because of the computation constraint on the first
vertical arrow of . The resulting protocol is shown in
Figure 6. It is identical to the one obtained from Step
2 in the previous section.

6. Conclusions and Future Work

We have presented a formal analysis of the JFK proto-
col. The goal has been to verify whether JFK satisfies all its
stated design goals. Towards this end, we have developed
a “rational reconstruction” of the core JFK protocol. Start-
ing from the Diffie-Hellman key exchange protocol [14] and
a simplified version of the standard challenge-response au-
thentication protocol [15], we systematically reconstructed
a close approximation of the JFK protocol using a series of
protocol compositions, transformations and refinements. At
each refinement step, we have clearly explained what pur-
pose is served by that message component and/or what at-
tack would arise if it were not executed. We believe that this
reconstruction provides a natural way to understand how the
message components of the protocol serve to meet the stated
design goals. Also, the general problem of composing se-
curity protocols in such a way that the security properties
of both the constituent protocols are retained, has been rec-
ognized as quite a difficult one. The method for compos-
ing Diffie-Hellman key exchange with challenge-response
as well as the composition technique for combining CDoS
protection with MDoS protection, although special cases,
do provide some indication that a general framework for
composing security protocols may be achievable.
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