
Testing Semantics:

Connecting Processes and Process Logics

Dusko Pavlovic1 and Michael Mislove2

1 Kestrel Institute, Palo Alto, CA
2 Tulane University, New Orleans, LA

Abstract. Early approaches to semantics utilized denotational models
to reason abstractly about programming languages. However, there also
was the need to provide an operational view of processes, which was
captured early on by Plotkin’s SOS style. More recently this approach
has been put on an equal footing with denotational semantics with the
realization that coalgebras capture this view of process behavior quite
precisely.
What remains missing from these approaches is an effective method for
capturing the interactions of a machine represented in a denotational
model and the data it manipulates. In this paper, we propose a method-
ology based on testing as a framework to capture these interactions.
Using a duality that models machines on the one hand, and the data
they manipulate on the other, testing is then used to capture the inter-
actions of each with the objects on the other side: just as the data that
are input into a machine can be viewed as tests that the machine can be
subjected to, the machine can be viewed as a test that can be used to
distinguish data. While this approach is based on duality theories that
now are common in semantics, it accomplishes much more than simply
moving from one side of the duality to the other; it faithfully represents
the interactions that embody what is happening as the computation pro-
ceeds.
Our basic philosophy is that tests can be used as a basis for modeling
interactions, as well as processes and the data on which they operate. In
more abstract terms, tests can be viewed as formulas of process logics,
and testing semantics connects processes and process logics, and assigns
computational meanings to both.

1 Introduction: The problem of testing

Testing a family Ξ of systems by a family Θ of tests, or process logic formulas,
is a map

Ξ × Θ
T // Ω

where Ω is the type of observations, or truth values. The simplest case is Ω =
{0, 1}, where 1 represents “accept”, or “succeed”, or “truth”, and 0 is “reject”, or

0 The support of the NSF and the US Office of Naval Research is gratefully acknowl-
edged

“fail”, or “diverge”, or “false”. A richer semantics can be achieved if one replaces
the truth values {0, 1} by the interval [0, 1], and interprets the result of a test
as the probability a process passes it. But the problem with either approach
presented in this fashion is that once the test is performed, we have only the
result. Making tests more dynamic requires taking a slightly different view.

The goal of testing is to find bugs, which distinguish an implemented, real
system R ∈ Ξ from an ideal reference system S ∈ Ξ, or to demonstrate that they
are indistinguishable. A bug can be construed as a test b ∈ Θ, which leads to
an observation R |= b, different from the observation S |= b. On the other hand,
if (R |= t) = (S |= t) for all tests t ∈ Θ, then the systems are computationally
indistinguishable, modulo testing equivalence

R ∼ S ⇐⇒ ∀t ∈ Θ. (R |= t) = (S |= t)

The basic methods of studying computation in terms of tests on automata go
back to the 1950s and E.P. Moore’s seminal paper [1]. Moore introduced dis-
tinguishing sequences of tests, as well as testing equivalence, and several other
fundamental ideas, which later led to a broad range of methods of conformance
testing, which is the discipline of proving that an implementation R conforms to
a standard S. Other problems resolved through testing include determining the
current or the final state of a given automaton, or characterizing an unknown
automaton.3 One of Moore’s most interesting contributions was the method
of extracting minimal automata, i.e. the canonical representatives of computa-
tional behaviors, from equivalence classes of states modulo testing equivalence.
The starting point of the present work is a small modification of Moore’s idea:
we represent equivalent states, which form a state of a minimal automaton, not
as equivalence classes of states, but as the maps from tests to observations that
they induce: two states are equivalent if and only if they induce the same map.
Either way, the computational behaviors arise as the elements in the image L of
the semantic map, in the form

Ξ
|=

//

�� ��?
??

??
??

? ΩΘ

L
.
�

>>||||||||

The choice of representatives, of course, does not matter for abstract theory, but
it turns out to make a lot of difference when it comes to analyzing state systems
which arise in the design of reactive and embedded systems, involving stochas-
tic, continuous, temporal or hybrid dynamics. The study of labelled Markov
processes [4] provides a striking example. On the other hand, a generic cate-
gorical framework where states are represented as truth assignments of logical
formulas has been used in [5–7]. In this paper, we will confine our presentation

3 Excellent surveys of testing methodologies (albeit a bit outdated in applications) are
[2, 3].

to the possibilistic setting, leaving the probabilistic setting for further work.
For this setting the categorical trace semantics of finite state automata [8] and
context-free languages [9] are clear examples, and are close conceptual predeces-
sors of testing semantics. What appears to be new is our ability to bring Turing
machines into the same setting.

2 Logical connections

A logical connection is a contravariant adjunction Mop ⊣ P : Sop // T be-
tween a category of “spaces” and a category of “types” or “theories”. In one
direction, a space X is mapped to the type PX of “predicates” over it; in the
other direction, a type A is mapped to the space MA of its models. Among the
many dualities that are examples of logical connections, we mention just a few:

Stone duality: T are Boolean algebras (viewed as propositional theories), where-
as S are Stone spaces (whose points are the ultrafilters, i.e. models of Boolean
propositional theories)

Topological spaces and complete Heyting algebras: pt ⊣ O : Espop //

Frm [10]
Self-duality of sets : ℘op ⊣ ℘ : Setop // Set, which can be viewed as du-

ality of discrete spaces and complete atomic Boolean algebras (the category
of which is equivalent to Setop),

Various spectral correspondences: C ⊣ S : Espop // Rng, connecting
topological spaces and rings (and leading to significant extensions of the
notion of a logical theory)

Denotational semantics: and connections of domains and spaces with pro-
gram logics [11]

The Schizophrenic object When S and T have enough limits and colimits,
and in particular a final object 1, then a connection between them can be viewed
as homming into a “schizophrenic object” Ω, that lives in both categories, as
the type P1 and space M1. Indeed, it is easy to see that these two objects have
the same underlying set Obs = |P1| = |M1|.4 For every space X we also have
the canonical maps

∐

|X|

1 // X

PX // P (
∐

|X|

1)
∼ //

∏

|X|

P1

where the isomorphim arises from the fact that P : Sop // T is a right adjoint.
Similarly, for every type A there is a canonical map MA // ∏

|A| M1. These

maps are usually monic, which means that Ω is a cogenerator5 both in S and in

4 We write |C| = C(1, C) for any object C of a category C.
5 In fact, the duality of S and T is usually built by restricting them to the parts

injectively cogenerated by the object Ω, embodying their connection.

T . Abusing notation, we define the functors ΩX =
∏

|X| P1 and ΩA =
∏

|A| M1,
and arrive at monic natural transformations

PX // // ΩX and MA // // ΩA

3 Process logics as test algebras

Process logics are modal logics for describing the behavior of computational
processes. Process formulas can be viewed as tests: a process satisfies a formula
means that it passes the test that the formula represents.

The first and probably best known process logic is the Hennessy-Milner logic
[12], which will be presented in section 6.2. In fact, computational traces can be
viewed as degenerate process formulas, with no logical operations, only modali-
ties. On the other hand, dynamic logics can be viewed as a natural extension of
process logics, where modalities are generated over arbitrary programs, and not
just atomic actions.

In this work, process modalities are generated over a given alphabet Σ, rep-
resenting atomic actions. Sometimes we distinguish the input alphabet Σ and
the output alphabet Γ ; or Σ represents the external actions (terminal symbols),
and Γ the internal ones.

Besides modalities, process formulas are generated by various logical sig-
natures, i.e. sets of logical connectors represented by the theory monad T :
T // T . If a type A ∈ T is thought of as a set of propositional letters, then
the type TA is the free propositional theory, containing all formulas generated
by A in the given signature. E.g., if the only logical connector is conjunction,
then TA is the free semilattice over A; but it has proven useful to also consider
free commutative groups, rings, and even C∗-algebras of a certain type, as “log-
ical” theories, generating tests for certain process behaviors. In all cases, the
considered algebraic theories have a distinguished constant, denoting “truth”,

represented by a natural transformation 1
⊤ // T .

Assumption: Ω is T -algebra. It is assumed that the schizophrenic object
Ω is given with a canonical algebraic structure TΩ // Ω, which lifts to all
TPX // PX along the inclusion PX // // ΩX .

3.1 Test theories

Test theories are obtained by extending T -algebras (”propositional theories”) by
the modal operators generated by Σ. A test theory is thus a weak algebra for
either of the functors

F0X = TX + Σ × X or F1X = T (Σ × X)

The difference between the two is that each F1-word is always a T -proposition,
whereas an F0-word can be a mere modal formula. In both cases, though, the
universal test theory is obtained as the initial weak algebra

Θi = µX. FiX

Tests are thus generated by the grammars

t0 ::= ⊤ | f(t0, . . . , t0) | a.t0 and t1 ::= ⊤ | f(a.t1, . . . , a.t1)

where f a logical connector from the signature of T . It follows that Θ1 is an
algebra for the monad T , whereas Θ0 is just a weak algebra for the functor T .
In fact, Θ1 is the initial action algebra:

Definition 1. An action algebra for a monad T : T // T and alphabet Σ

is an algebra TA
α // A for the monad T , together with a map Σ×A

· // A,
called prefixing. An action algebra homomorphism is a T -algebra homomorphism
which also preserves prefixing.

Proposition 1. The free action algebra for the monad T and the alphabet Σ
generated by B is the initial weak algebra ΘB = µX. T (B + Σ × X).

4 Automata and processes as coalgebras

The choice constructors are represented by the monad S : S // T .

Definition 2. A (state) machine with the inputs from Σ, the outputs from Γ
and the final states predicated over Υ is represented by

– a coalgebra X // GX where GX = Υ × (S(Γ × X))
Σ

– an initial state x ∈ X.

A process is a machine where any state may be final, i.e. Υ = 1. A process
thus boils down to a coalgebra ∂ : X // (S(Γ × X))Σ and the initial state
x ∈ X. A machine where Υ 6= 1 is often called an automaton. When the coalgebra
X // GX is clear from the context, we speak of the automaton or process
x ∈ X.

A coalgebra structure of a machine consists of a pair X
〈Φ,∂〉// Υ × (S(Γ × X))Σ ,

where Φ : X // Υ is the characteristic function of the final states, and ∂ :
X // (S(Γ × X))

Σ
assigns to each state a choice of an output and a next

state.6

Final states are usually evaluated in the type of truth values Υ = L. For
the possibilistic automata, Υ = 2, and Φ : X // 2 is just the characteristic
function of the set of final states. In general, Υ may be different from L, e.g. an
arbitrary semiring [13].7

6 Anticipating semantics, we point out that the execution is always allowed to con-
tinue beyond a final state. This is in contrast with the deadlock states, which are
represented by a choice functor G of the form G = 1 + G′. The deadlock states of a
coalgebra X // 1 + G′X are those that get mapped into 1.

7 In Turing machines, some authors distinguish the accepting states, rejecting states
and halting states; others allow families of initial states. All such families are given
by suitable predicates.

The computational differences between reactive (or reading) machines, where
Γ = 1, and generating (or writing) machines are discussed in [14]. Coalgebras

X // (S(Γ × X))Σ thus represent processes that both read and write, which
is perhaps clearer in the transposed form Σ × X // S(Γ × X).

Initially we focus on reactive processes, which are represented by the final
weak coalgebra Ξ = νX. (SX)Σ .

Assumption: Ω is S-algebra. It is assumed that Ω is given with a canonical
algebraic structure SΩ // Ω, which lifts to all SMA // MA along the
inclusion MA // // ΩA.

5 Testing semantics

The behaviors of processes from Ξ are captured by testing whether they satisfy

formulas from Θ and observing the results in Ω via Ξ × Θ
T // Ω. However,

since Ξ and Θ generally live in the different universes S and T , respectively, their
interaction can only be observed using the connection between these universes,
in one of the two forms:

Ξ
|= // ΩΘ

Θ
=| // ΩΞ

In general, given a coalgebra X // GX , and an algebra A oo FA, we define
two semantic maps

X
|= // MA

A
=| // PX

connected by the adjunction. Each state x ∈ X induces a map x |= (−) :
A // Ω which maps each piece of data a ∈ A to the observation (x |= a) ∈ Ω
in which the computation of x on a will result. Dually, each piece of data a ∈ A
induces a map

a =| (−) ∈ PX // ΩX

which gives for each state x ∈ X the observation a =| x. Theorem 1 below
describes how these various views of semantics transform the algebraic structure
of tests and the coalgebraic structure of processes.

5.1 Connecting algebras and coalgebras: Representation theorem

Logical view. The logical operation of negation can be viewed as a very special
case of a connection: if A is a pseudocomplemented lattice (Heyting algebra),
then ¬op ⊢ ¬ : Aop // A is clearly a connection. Indeed, for every ω ∈ A, the
operation (−) ⇒ ω : Aop // A is self adjoint. In posets and lattices, functors
F, G : A // A are monotone operators, algebras are super-fixpoints a ≥ Fa,

and colagebras are sub-fixpoints a ≤ Ga; the initial algebra µx.Fx is the least
fixpoint, and the final coalgebra νx.Gx is the greatest fixpoint.

For logical intuition, connections can be thought of as generalisations of nega-
tion. From that perspective, the following theorem can be viewed as a categorical
elaboration of the fact that

Gx ≤ ¬F¬x

νx.Gx ≤ νx.¬F¬x ≤ ¬µa.Fa

What is the relevance of this fact? As explained in the introduction, the goal of
this work is to explore the interplay of algebra and coalgebra in the theory of
processes and in practice of system specification. In practice, the behavior of a
system is often specified as a quotient of a final coalgebra νX.GX of processes
using an initial algebra µA.FA of tests. The connection Mop ⊣ P : Sop // T

now allows deriving the semantics νX.GX
|= // MµX.FX from the distribu-

tivity FP // PG, i.e.

G // MFP

νX.GX // νX.MFPX // MµA.FA

The specified behavior is then the MFP -coalgebra L which is the image of
νX.GX in νX.MFPX . Furthermore, the carrier L can be conveniently repre-
sented as a subobject of MµA.FA. Informally, this is the content of the next
theorem.

Relating a MFP -coalgebra and a M -image of a F -algebra requires a homo-
morphism which is consistent with the algebra and coalgebra structures both
on the covariant and on the contravariant side of the correspondence (i.e., the
“negation”). This is captured by the notion of twisted coalgebra homomorphisms,
defined in the statement of the theorem.

Theorem 1. 8 For a connection Mop ⊣ P : Sop // T , endofunctors G :
S // S and F : T // T , and a distributive law λ : FP // PG the
following hold.
(a) The predicate functor P : Sop // T lifts to P̂ : (SG)op //

FT , map-
ping

X
∂ // GX

P̂∂ : FPX
λ // PGX

P∂ // PX

(b) P̂ does not generally have an adjoint, but there is a correspondence of
algebra homomorphisms and of twisted coalgebra homomorphisms

α // P̂ ∂

Λ∂ // Mα

8 For simplicity and generality of the statement of the theorem, we avoid the finality
and the initiality requirements, and spell out just the relations of F -algebras, and
G− and MFP -coalgebras.

where Λ : SG
// SMFP is the functor mapping the coalgebra X

∂ // GX to

X
∂ // GX

λ′

// MFPX.

FA

α

��

Ff // FPX

λ

��

MFPX
MFf // MFA

PGX

P∂

��

GX

λ′

OO

A
f

// PX X

∂

OO

f ′

// MA

Mα

OO

(c) If T is a regular category, and F : T // T preserves reflective coequaliz-
ers, then FT is a regular category. In particular, every F -algebra homomorphism

α
f // P̂ ∂ has a regular epi-mono factorisation.

(d) If S is a regular category, and MFP preserves weak pullbacks, then every

twisted coalgebra homomorphism Λ∂
f ′

// Mα has a regular epi-mono factori-
sation, which induces a coalgebra ℓ : L // MFPL as the image of Λ∂.

MFPX
MFPe // MFPL

MFm′

// MFA

GX

λ′

OO

X

∂

OO

e
// // L

ℓ

OO�
�

�

�

�

�

�

� �

m
// MA

Mα

OO

(e) If the coalgebra X // GX is final, then the coalgebra L // MFPL is
final if and only if the functor Λ : SG

// SMFP is essentially surjective.

Comment. The correspondence T /P ∼= S/Mop 9 thus lifts to FT /P̂ ∼= Λ/M ,
where the last denotes the comma construction for twisted homomorphisms.
Abstractly, this does not seem like a very natural construction; the examples
show that this is the ubiquitous framework where quotienting of the G-coalgebras
∂ induced by testing semantics takes place.

Definition 3. A duality is a connection where the functors M and P are equiv-
alences.

Corollary 1. Suppose that the connection Mop ⊣ P : Sop // T is a duality.
Then the following are true.
9 See the Appendix A for the relevant definitions.

(f) The algebra α : FA // A is initial if and only if the coalgebra M(α ◦
ε) : MA // MFPMA is final. When that is the case, then the behavior ℓ :
L // MPL is a subcoalgebra of the final MFP -coalgebra.

(g) If F ∼= PGM (equivalently G ∼= MFP), then the behavior ℓ : L // MFPL,
constructed in Theorem 1, is isomorphic to the coalgebra ∂ : X // GX. If
∂ : X // GX is final and α : FA // A is initial, then ∂ ∼= Mα and
α = P∂.

In many cases, the functor F = PGM has a simpler representation than G,
and the initial algebra Θ = µA.FA is easier to construct in T than the final
coalgebra of Ξ = νX.GX is in S. In such cases, the isomorphism Ξ = MΘ
offers significant technical advantages [4].

5.2 Metrics on processes and tests

So far, testing semantics has been used to identify behaviorally equivalent pro-
cesses, i.e. those x, y ∈ X where (x |= t) = (y |= t) holds for all tests t ∈ A. When
the type Ω of observations has additional structure, testing can actually provide
significantly more information. For example, if Ω supports a sup operation, then
we can exploit this fact to define metrics on both the family of processes and
on the family of tests. In the possibilistic setting, however, the metric captures
the same information as the representation by behaviors. However, if the testing
regime is extended to include probabilistic tests, then more information can be
obtain. See Appendix B for further discussion.

5.3 Specifying semantics

Given a coalgebra X
∂ // GX and the initial test algebra FΘ

̺ // Θ, we

define a semantics X
|= // MA by induction over Θ, using the fact that Ω is a

T -algebra in T and an S-algebra in S — i.e. that each PX is a T -algebra in T ,
whereas each MA is an S-algebra in S. Given an initial state x of a machine X ,
we define a map x |= (−) : Θ // Ω.

Loose tests Since an element of Θ0 = µX. TX + Σ × X is in the form

t ::= ⊤ | f(t0 . . . tn) | a.t

where ⊤ is the distinguished constant of the algebraic theory of the monad T ,
and f is an operation from that theory

(
x |= ⊤

)
= ⊤ (1)

(
x |= f(t0 . . . tn)

)
= f

(
(x |= t0) . . . (x |= tn)

)
(2)

(
x |= a.t

)
=

(
δ(x, a) |= t

)
(3)

where δ : X × Σ // SX is the transpose of X
∂ // (SX)Σ, and |= extends

along X
|=

// SX // MΘ // ΩΘ.

Remark. Clauses (1) and (2) say that x |= (−) : A // Ω is a T -algebra
homomorphism. Clause (3) extends x |= (−) beyond TΘ to Σ × Θ, using the

fact that Ω (viz MΘ) is an S-algebra, and extending X
|= // MΘ to an S-

algebra homomorphism SX
|= // MΘ.

Tight tests Since an element of Θ1 = µX. T (Σ × X) is in the form

t ::= ⊤ | f(a0.t0 . . . an.tn)

the semantics retains clause 1, deletes clause 3, and replaces clause 2 with

(
x |= f(a0.t0 . . . an.tn)

)
= f

(
(δ(x, a0) |= t0) . . . (δ(x, an) |= tn)

)

Note further that testing a coalgebra X
〈Φ,∂〉// Ω × GX , where Φ : X // Ω

denotes the final states, changes the base clause of semantics to
(
x |= ⊤

)
= Φ(x).

6 Possibilistic semantics

Possibilistic semantics is evaluated in Ω = {0, 1}. In the simplest case, both
state spaces and data types are modeled in the same universe S = T = Set of
sets and functions. The contravariant powerset functor is self-adjoint ℘op ⊣ ℘ :
Setop // Set, and maps a state to the type of predicates over it, and a type
to the space of its models.10

Possibilistic systems Possibilistic nondeterminism means that there can be
several possible transitions from a state x ∈ X , for a given action a ∈ Σ. The
choice monad is thus based on the (covariant) finite powerset functor S = ℘

f
:

S // S. Simple processes are thus coalgebras in the form X // (℘
f
X)Σ ,

orX // ℘
f
(Σ × X).

6.1 Linear semantics: trace testing

A trace semantics describes computations over strings of symbols. The tests are
thus pure modal formulas, with no logical operations except the constant ⊤. The
logic monad is thus the smallest possible: TA = ⊤, for all A ∈ T = Set. The
loose and the tight semantics for it coincide, and the test algebra Θ is initial for
FA = 1+Σ×A, i.e. the free monid Σ∗. Trace semantics have been investigated
as an extension of coalgebraic methods in [8, 9]. We describe three examples.
10 In the Hennessy-De Nicola [15] style testing semantics, tests are a special class of

processes. In our testing framework, this means that tests and processes live in the
same universe S = T , and moreover that the test algebra FΘ // Θ is contained
in (can be completed to) a choice coalgebra Ξ // GΞ. Indeed, the trace algebra
Θ = Σ∗ is a coalgebra Σ∗ // Σ × Σ∗ // ℘

f
(Σ × Σ∗).

Finite state automata Possibilistic automata are coalgebras in the form

X
〈Φ,∂〉// 2 × ℘

f
(Σ × X). The trace semantics of finite state automata is ob-

tained by instantiating (1-3)

(x |= ⊤) = Φ(x) (4)

(x |= a.t) =
∨

x
a
→y

(y |= t) (5)

where x
a
→ y means that y ∈ δ(x, a). Note that (4) says that x |= (−) : Θ // Ω

only preserves ⊤ where Φ holds. The final states Φ are an explicit relativisation
of the ⊤-preservation requirement; the semantics x |= (−) : Θ // Ω is a
T -algebra homomorphism up to Φ.

Let Aut denote bisimulation classes of finite-state automata, let GX = 2 ×
℘

f
(Σ × X) ∼= ℘

f
(1 + Σ × X), and let Aut // G(Aut) be final for all finite

G-coalgebras. Then the trace semantics Aut
|= // ℘Σ∗ maps each automaton

x ∈ Aut to the language Lx = {σ ∈ Σ∗ | x |= σ}.

Pushdown automata While finite state automata behaviors were obtained by
structuring the alphabet Σ, pushdown automata are obtained by structuring the
state spaces X . Fix a set Γ , to be used as “non-terminal” symbols, and extend
each state space X by the free monoid action to X×Γ ∗. A pushdown automaton
is a coalgebra for the functor G : S // S, defined

GX = 2 ×℘
f
(X × Γ ∗)Σ+1

where the “blank” symbol ⊔ ∈ 1 allows pure non-terminal rewrites. A start non-
terminal symbol Z0 ∈ Γ is assumed to be distinguished, or freely added. The
test algebra is still the same, Θ = Σ∗.

Turing Machines Turing machines act on tapes. The obvious idea is to view
the contents of a tape as a test. The problem is that the essential property of
the tape is that it can be extended in both directions, so at the first sight, the
Turing machine interaction does not seem not fit naturally into the inductive
testing framework.

Another look at the acceptance condition for Turing machines offers a solu-
tion. A Turing machine X accepts a word t ∈ Σ∗ if and only if reaches a final
state, in any configuration, after having started a computation with the head
just to the left of the word t, presented on the tape. — So the accepted words
initially extend to the right of the head. The left part of the tape is only used
for intermediary computation.

A Turing machine can thus be modeled following the idea of a pushdown au-
tomaton: the tape to the left of the head can be viewed as a stack, and treated as
a part of the state; the tape to the right of the head can be construed as another
stack, containing the actual test. Unlike a pushdown automaton, a Turing ma-
chine allows words in the same alphabet in both stacks. A pushdown automaton
had two disjoint alphabets, Γ and Σ for the left and the right stack, respectively.

Moreover, the right “stack” of a pushdown automaton is not a real stack, since
it only allows popping.

A Turing machine can thus be viewed as a machine with two real stacks,
representing the two parts of its tape, on the two sides of the head. Just like a
pushdown automaton, besides the alphabet Σ, it may allow non-terminal sym-
bols, at least ⊔, used in computation, but not in the tested words.

A nondeterministic Turing machine is thus a coalgebra X
〈Φ,∂〉// 2×℘

f
(X ×

Γ × {⊳, ⊲})Γ , where Γ ⊇ Σ + {⊔}. As before, the component X
Φ // 2 marks

the final states, whereas the transition function X×Γ
δ // ℘

f
(X×Γ×{⊳, ⊲})

assigns to each state and each input the possible next states, outputs, and the
direction for the move of the head. We represent the move of the head by popping
a symbol from one stack and pushing it onto the other.

A more complete discussion of all three of these examples is contained in
Appendix C

6.2 Branching semantics: set-tree testing

Here not only are the universes S and T identical, but we also take the logic
monad T on to be the same as the choice monad S: they are both the finite
powerset ℘

f
: Set // Set. So both the space of the choices ℘

f
X and the logic

of tests ℘
f
A are free semilattices. But the two lattices will be used differently:

the former as a join semilattice (because the process can continue with this
computation or with that computation. . .), and the latter as a meet semilattice
(because the testing formula is a conjunction).

Remark. The same class of computational behaviors could be formalized by
taking either of the monads T and S, or both of them, to be the diagonal functor
∆X = X × X . This would just mean that nondeterministic branching would
always be binary, and that tests would be just binary conjunctions. Associativity,
commutativity and idempotence of these operations would be imposed later. The
intermediary options would be to take the functor ℘≤2X = {x0, x1} of (at most)
two-element subsets, imposing commutativity and idempotence, and leaving out
associativity.

Two-way simulation In the simplest case TA = ℘
f
A. The tests are thus in

the form

t ::= ⊤ | t ∧ t · · · ∧ t | a.t

where ∧ is an associative, commutative, idempotent operation with unit ⊤. The
semantics (1-3) becomes

(x |= ⊤) = ⊤

(x |=
n∧

i=1

ti) =
n∧

i=1

(x |= ti)

(x |= a.t) =
∨

y∈δκ(x,a)

(y |= t)

The functors generating data and processes are thus

FA = ℘
f
A + Σ × A

GX = ℘
f
(Σ × X)

Proposition 2. Let Θ be the initial F -algebra and Ξ the final G-coalgebra. Let
the partial order on X be defined by

x ≤ y ⇐⇒ ∀t ∈ Θ. (x |= t) ≤ (y |= t) (6)

Then the process x can be simulated by the process y if and only if x ≤ y, i.e.

x ≤ y ⇐⇒ ∀a ∈ Σ∀x′ ∈ δ(x, a)∃y′ ∈ δ(y, a). x′ ≤ y′ (7)

Bisimulation Adding negation to the logic

t ::= ⊤ | t ∧ t · · · ∧ t | ¬t | a.t

i.e. testing by

FA = ℘
f
A + A + Σ × A

the semantics is extended by the clause

(x |= ¬t) = ¬(x |= t)

This gives an interesting strengthening of the testing power.

Proposition 3. The equivalence

x ∼ y ⇐⇒ ∀t ∈ Θ. (x |= t) = (y |= t)

means just that the processes x and y are bisimilar

x ∼ y ⇐⇒ ∀a ∈ Σ

(∀x′ ∈ δ(x, a)∃y′ ∈ δ(y, a). x′ ∼ y′) ∧

(∀y′ ∈ δ(y, a)∃x′ ∈ δ(y, a). x′ ∼ y′)

Strong bisimulation by Stone duality Strong bisimilarity is classified by
the final coalgebra Ξ // ℘

f
(Σ × Ξ). Using the restriction of the Stone du-

ality S ⊣ C : Setop // caBa from Stone spaces and Boolean algebras to sets
(discrete spaces) and complete atomic Boolean algebras, allows applying Corol-
lary 1. Setting FA = C℘

f
(Σ × SA) allows a representation of the bisimulation

classes as characters of the boolean algebra Θ = µA.FA.

Weak bisimulation To model communication, we take11 Σ = Σ+ +Σ− +{τ},
and consider coalgebras for GX = G0X + G1X

G0X = (℘
f
X)Σ

G1X = X × X

For a coalgebra X
∂ // GX , ∂x ∈ G0X means that x branches to x

a0

x 0,

x
a1

x1. . . x
an→ xn, whereas ∂x ∈ G1X means that x = x0 ⊗ x1. The modified

part of semantics is now

(x |= a.t) =






∨
x

a
→y

(y |= t) if ∂x ∈ G0X

(x′
0 ⊗ x1 |= t) if ∂x = x0 ⊗ x1 ∧ x0

a

→ x′
0

· · ·

7 Summary

This work has explored the interplay of algebra and coalgebra in theory and
practice of process specification. Processes are often represented as coalgebras:
state transitions are represented by a coalgebra’s structure maps. Since coalgebra
homomorphisms thus preserve and reflect state transitions, they capture com-
putational behaviors. The final coalgebra thus gives a canonical representation
of computational behaviors.

But this does not capture important models of computation that are richer
than mere processes, but that also specify nontrivial interactions with data:
e.g., Turing machines read and write on tapes, various classes of automata re-
act to or generate strings of symbols, in many different ways. In some cases,
the specified computational interactions induce constraints on the structure of
processes, so that not all coalgebras correspond to actual machines. In other
cases, the same process model underlies several different models of computation,
realized through different interactions with data; the other way around, within
the same model, different processes often have indistinguishable computational
behaviors. To address this, we have found a precise representation methodology
that captures the distinctions and the identifications that arise from the variety
of computational models needed to explain real computational phenomena. This
has been accomplished by combining coalgebraic descriptions of process with
algebraic specification of the data they operate on, allowing an analysis of their
interactions. Our Main Theorem 1 is key to this approach. A lot remains to do
here. For example, presenting probabilistic systems from this perspective is a
major goal, e.g., to understand better the work from [16] combining probability
and nondeterminism.

11 This is what is traditionally done. A conceptually more telling, albeit more compli-
cated way, might be to take computational paths from the free group, rather than
monoid, over a simple alphabet Σ.

References

1. Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies,
Princeton (1956) 129–153

2. Holzmann, G.J.: Design and Validation of Computer Protocols. Software Series.
Prentice Hall, London (1991)

3. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. In: Proceedings of the IEEE. Volume 84. (1996) 1090–1126

4. Mislove, M., Ouaknine, J., Pavlovic, D., Worrell, J.: Duality for labelled Markov
processes. In Walukiewicz, I., ed.: Proceedings of FoSSaCS 2004. Volume 2987 of
Lecture Notes in Computer Science., Springer Verlag (2004) 393–407

5. Pavlovic, D., Smith, D.R.: Composition and refinement of behavioral specifications.
In: Automated Software Engineering 2001. The Sixteenth International Conference
on Automated Software Engineering, IEEE (2001)

6. Pavlovic, D., Smith, D.R.: Guarded transitions in evolving specifications. In Kirch-
ner, H., Ringeissen, C., eds.: Proceedings of AMAST 2002. Volume 2422 of Lecture
Notes in Computer Science., Springer Verlag (2002) 411–425

7. Pavlovic, D., Pepper, P., Smith, D.R.: Colimits for concurrent collectors. In Der-
showitz, N., ed.: Verification — Theory and Practice. Essays Dedicated to Zohar
Mana on the Occasion of His 64th Birthday. Volume 2772 of Lecture Notes in
Computer Science., Springer Verlag (2003) 568–597

8. Jacobs, B.: Trace semantics for coalgebras. In: Coalgebraic Methods in Computer
Science (CMCS) 2004. Volume 106 of Electr. Notes in Theor. Comp. Sci. (2004)

9. Hasuo, I., Jacobs, B.: Context-free languages via coalgebraic trace semantics. In
Fiadeiro, J., Harman, N., Roggenbach, M., Rutten, J., eds.: Algebra and Coalgebra
in Computer Science (CALCO’05). Volume 3629 of Lecture Notes in Computer
Science., Berlin, Springer-Verlag (2005) 213–231

10. Johnstone, P.: Stone Spaces. Number 3 in Cambridge Studies in Advanced Math-
ematics. Cambridge University Press (1982)

11. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic
51 (1991) 1–77

12. Milner, R.: Communication and concurrency. International Series in Computer
Science. Prentice Hall, London (1989)

13. Rutten, J.: Behavioral differential equations: a coinductive calculus of streams,
automata and power series. Theor. Comp. Sci. 308 (2003) 1–53

14. Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified models
of probabilistic processes. Inf. Comput. 121(1) (1995) 59–80

15. DeNicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34 (1984) :83–133

16. Varacca, D.: The powerdomain of indexed valuations. In: Proceedings 17th IEEE
Symposium on Logic in Computer Science, IEEE Press (2002)

17. Hyland, M.: A small complete category. Annals of Pure and Applied Logic 40

(1988) 135–165
18. Pavlovic, D.: On completeness and cocompleteness in an around small categories.

Annals of Pure and Applied Logic 74 (1995) 121–152
19. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 (1953) 131–295
20. Jacobs, B.: A bialgebraic review of regular expressions, deterministic automata

and languages. (In: Joseph Goguen Festschrift)
21. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Massachusetts (1979)
22. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading, Mas-

sachusetts (1994)

Appendix

A The Structure of connections

The total categories of a connection are

T /Ω

∼=

��

S/Ω

∼=

��
1/Mop

� t

&&NNNNNNNNNNN
1/P

K k

xxqqqqqqqqqqq

S/Mop ∼= T /P

&&NNNNNNNNNNNN

wwoooooooooooo

S T

When T = Set, then 1/P is the “category of elements” of the presheaf P : Sop // Set,
and the projection 1/P // S the discrete fibration induced by this presheaf.

If the types in T carry some sort of category structure (e.g. they are monoids, or
posets, or even discrete) then P : Sop // T is an indexed category. If 1/P ∼= S/Ω
is taken to be a lax comma (in this case opslice), then the projection S/Ω // S is
the Grothendieck fibration induced by the indexed category P : Sop // T , which is
the “externalisation” [17, 18] of Ω as an internal category in S .

B Testing Metrics

Iif the connection structure is viewed as a suitable completion construction, then Ω is
a certain completion; at least a complete lattice. Using its supremum operation, the
metric of Ω readily lifts to a metric on MA // // ΩA

d(f, g) =
_

t∈A

d(ft, gt)

which then lifts to a pseudometric on processes along the process semantics map

X
|= // MA, by setting d(x, y) = d

`

(x |=), (y |=)
´

. The behavior coalgebra L, con-
structed in theorem 1, is just the quotient of X where this pseudometric becomes a
metric. This testing metric provides valuable information about behaviors. Even if two

processes are not behaviorally indistinguishable, how different are they? — The testing
metric provides answers to such questions.

Note, however, that the testing pseudometric on processes induced by possibilistic
testing captures exactly the same information as the representation of behaviors, since
d(x, y) ⇐⇒ x ∼ y, i.e. if the processes x and y are indistinguishable. The testing
metric on behaviors is thus trivial, with d(x, y) = 0 ⇐⇒ x = y and d(x, y) = 1 ⇐⇒
x 6= y. The testing metric provides essential new information when it is induced by
probabilistic testing, and more generally when Ω 6= {0, 1}.

Studying the way the distance between processes is approximated by evaluating
them on the various tests provides guidance for test selection and generation. In general
every set of tests U ⊂ A induces a relative testing pseudometric on processes

dU (x, y) =
_

t∈U⊆A

d
`

(x |= t), (y |= t)
´

In an informal sense, the value

m(U) =
_

x,y∈X

dU (x, y)

dA(x, y)

measures the distinguishing power of the set of tests U . To formalize this, one could

begin by restricting it to the σ-algebra on A which makes A
=| // PX measurable.

The σ-algebra on PX // // ΩX is induced from Ω. Although continuous, the map m
will in general still not be a measure, but perhaps a Choquet capacity [19]. In any case,
it carries the information useful for estimating the error of various testing suites.

Process distance on tests Dually, a test semantics map A
=| // PX induces a

process pseudometric on tests d(s, t) =
_

x∈X

d
`

(x |= s), (x |= t)
´

. By abstract category

theory, it can be shown that the quotient of the test algebra A where the process
pseudometric becomes a metric induces the same equivalence X as A does; and that
the behavior coalgebra L induces the same equivalence on A as X. So identifying tests
(or processes) at distance 0 does not change the equivalence of processes (resp. tests)
induced on the other side. On the other hand, increasing the mutual distances of tests in
a testing suite increases its distinguishing power. That is why the process pseudometric
on tests can be useful for test suite construction, and for estimating the error in its
results: how closely do they approximate the true distance between processes? If a test
suite did not find any bugs (i.e. manage to distinguish the the real process from its
idealized specification), how much do we know about the actual distance between these
processes?

C Details of trace semantics

Finite state automata Possibilistic automata are coalgebras in the form X
〈Φ,∂〉 // 2×

℘
f
(Σ × X). The trace semantics of finite state automata is obtained by instantiating

(1-3)

(x |= ⊤) = Φ(x) (8)

(x |= a.t) =
_

x
a
→y

(y |= t) (9)

where x
a
→ y means that y ∈ δ(x, a). Note that (4) says that x |= (−) : Θ // Ω

only preserves ⊤ where Φ holds. The final states Φ are an explicit relativisation of
the ⊤-preservation requirement; the semantics x |= (−) : Θ // Ω is a T -algebra
homomorphism up to Φ.

Representation. Let Aut // G(Aut) be final for all finite G-coalgebras, for
GX = 2 × ℘

f
(Σ × X) ∼= ℘

f
(1 + Σ × X). The elements of the underlying set Aut

can be viewed as bisimulation classes of finite-state automata, or as finite Σ-labelled
hypersets with a distinguished subset of finite states.

The trace semantics Aut
|= // ℘Σ∗ maps each automaton x ∈ Aut to the language

Lx = {σ ∈ Σ∗ | x |= σ}. The distribution FP // PG is in this case the map

1 + Σ ×℘X // ℘(2 ×℘
f
(Σ × X))

⊤
� // {〈1, ∅〉}

〈a, U〉
� //

n

〈0, {a} × V 〉 | V ∈ ℘
f
U

o

i.e. a relation in which a pair 〈a,U〉 ∈ Σ ×℘X corresponds with a finite set {〈b, x〉 ∈
Σ × X} if and only if all b = a and x ∈ U . Postcomposing the coalgebra structure
Aut // 2×℘

f
(Σ×Aut) with the transpose 2×℘

f
(Σ×X) // ℘

`

1 + Σ ×℘(Aut)
´

of this relation, we get

Aut // ℘
`

1 + Σ ×℘(Aut)
´

x
� // {⊤ | Φ(x)} ∪ {〈a,U〉|δ(a, x) ⊆ U}

The image of the semantics map Aut
|= // ℘Σ∗ is the set Reg

� � // ℘Σ∗ of regular
languages, which comes with the coalgebra structure

Reg // ℘
`

1 + Σ ×℘(Reg)
´

and L
� // {⊤|〈〉 ∈ L} ∪ {〈a, U〉 |∂a(L) ∈ U}

where ∂a(L) = {σ ∈ Σ∗| a.σ ∈ L}.

℘
`

1 + Σ ×℘(Aut)
´ // ℘

`

1 + Σ ×℘(Reg)
´ // ℘(1 + Σ × Σ∗)

2 ×℘
f
(Σ × Aut)

λ′

OO

Aut

∂

OO

// // Reg

r

OO

� � // ℘Σ∗

℘α

OO

Instantiating (1-3) again, we get canonical semantics for Reg

`

L |= ⊤
´

=

(

⊤ if 〈〉 ∈ L

⊥ otherwise
and

`

L |= a.t
´

=
^

〈a,U〉∈r(L)

_

M∈U

M |= t

While Reg can be obtained directly, without any excursion into testing, as the final
coalgebra for a suitable family of deterministic automata [20], the point here is to derive
regular expressions as the behaviors of a class of automata which can be interpreted
(tested) in many other ways, leading to different behaviors.

Pushdown automata While the various finite state automata behaviors were ob-
tained by structuring the alphabet Σ, pushdown automata are obtained by structuring
the state spaces X.

Fix a set Γ , to be used as “non-terminal” symbols, and extend each state space X
by the free monoid action to X × Γ ∗. A pushdown automaton is a coalgebra for the
functor G : S // S , defined

GX = 2 ×℘
f
(X × Γ ∗)Σ+1

where the “blank” symbol ⊔ ∈ 1 allows pure non-terminal rewrites. A start non-
terminal symbol Z0 ∈ Γ is assumed to be distinguished, or freely added.

The test algebra is still the same, Θ = Σ∗.

The semantics of a pushdown automaton X × Γ ∗ 〈Φ,∂〉 // 2 ×℘
f
(X × Γ ∗)Σ+1 will

be
`

x, γ |= 〈〉
´

= Φ(x)
`

x, 〈〉 |= a.t
´

= ⊥
`

x,Z.γ |= a.t
´

=
_

y,φ∈∂(x,Z.γ)(a)

`

y, φ · γ |= t
´

∨
_

y,φ∈∂(x,Z.γ)(⊔)

`

y, φ · γ |= a.t
´

The induced T -homomorphism Σ∗
=| // PX transposes to X

|= // M(Σ∗). Tak-
ing X to be the final coalgebra Psa = νX. (℘

f
X × Γ ∗)Σ+1, we get the coalgebra Cfl

of context free languages

℘
`

1 + Σ ×℘(Psa)
´ // ℘

`

1 + Σ ×℘(Cfl)
´ // ℘(1 + Σ × Σ∗)

2 ×
“

℘
f
(Psa × Γ ∗)

”Σ+1

λ′

OO

Psa

〈Φ,∂〉

OO

// // Cfl

OO

� � // ℘Σ∗

Mα

OO

Note that the representation eliminates the non-terminals Γ , since the distributivity λ′,
connects the next states of a pushdown automaton with the derivatives of its accepted
language. Specifying this distribution directly seems cumbersome, but it can also be
obtained by precomposing with the inverse of the isomorphism 〈Φ, ∂〉 the more intuitive
coalgebra structure, induced by the accepted languages

Psa // ℘
`

1 + Σ ×℘(Psa)
´

x
� // {⊤|Φ(x)} ∪ {〈a, U〉 |∃y ∈ U. ∂aL(x) = L(y)}

Remark. Context free grammars have been studied in [9] as coalgebras for the functor

GX = ℘
f

`

(Σ + X)∗
´

Such coalgebras are however not interpreted as processs: the elements of the underlying
set x ∈ X are not states, but rather the nonterminal symbols from our Γ . The structural
difference is that state transitions output (or input) symbols as they go, whereas rewrite
rules output terminal symbols only at the end. This is reflected in the fact that processs
are coalgebras for functors extending Σ × X, whereas grammars are coalgebras for
functors extending Σ + X.

Turing machines Turing machines act on tapes. The obvious idea is to view the
contents of a tape as a test. The problem is that the essential property of the tape is
that it can be extended in both directions12; so at the first sight, the Turing machine
interaction does not seem not fit naturally into the inductive testing framework.

Another look at the acceptance condition for Turing machines offers a solution. A
Turing machine X accepts a word t ∈ Σ∗ if and only if reaches a final state, in any
configuration, after having started a computation with the head just to the left of the
word t, presented on the tape. — So the accepted words initially extend to the right
of the head. The left part of the tape is only used for intermediary computation.

A Turing machine can thus be modeled following the idea of a pushdown automaton:
the tape to the left of the head can be viewed as a stack, and treated as a part of the
state; the tape to the right of the head can be construed as another stack, containing
the actual test. Unlike a pushdown automaton, a Turing machine allows words in the
same alphabet in both stacks. A pushdown automaton had two disjoint alphabets, Γ
and Σ for the left and the right stack, respectively. Moreover, the right “stack” of a
pushdown automaton is not a real stack, since it only allows popping.

A Turing machine can thus be viewed as a machine with two real stacks, repre-
senting the two parts of its tape, on the two sides of the head. Just like a pushdown
automaton, besides the alphabet Σ, it may allow non-terminal symbols, at least ⊔,
used in computation, but not in the tested words.

A nondeterministic Turing machine is thus a coalgebra X
〈Φ,∂〉 // 2×℘

f
(X×Γ×{⊳

, ⊲})Γ , where Γ ⊇ Σ+{⊔}. As before, the component X
Φ // 2 marks the final states,

whereas the transition function X×Γ
δ // ℘

f
(X×Γ ×{⊳,⊲}) assigns to each state

and each input the possible next states, outputs, and the direction for the move of the
head. We represent the move of the head by popping a symbol from one stack and
pushing it onto the other.

However, to simplify definitions (avoid clauses dealing with popping from the empty
stack) it is convenient to assume that the stacks are padded by ⊔s to infinity. That is
why they are usually thought of as infinite tapes. (In fact, taking just one of them to
be infinite suffices [21].)

In order to write down the semantics of a Turning machine more conveniently, we
adjoin the “infinite stacks”/”tapes” to the coalgebraic description of the machine:

X × Γ
δ // ℘

f
(X × Γ × {⊳, ⊲})

X × Γ⊕ δ⊕ // ℘
f
(X × Γ⊕ × {⊳, ⊲})

where

Γ⊕ = {γ ∈ Γ ω| |γ \ ⊔| < ω}

i.e. each γ ∈ Γ⊕ has only a finite number of non-blank symbols.

δ⊕(x, a.γ) = {〈y, b.γ, ♦〉|〈y, b, ♦〉 ∈ δ(x, a)}

12 In some versions of Turing machines, the tapes are infinite only in one direction, but
the head can still move in both directions, and read and write on both sides, which
makes direct induction over the tape impossible.

The semantics is now13

(x, b.γ |= d.ϕ) = Φ(x) ∨

∨
_

〈y,c,⊳〉∈δ(x,b)

(y, γ |= c.d.ϕ)

∨
_

〈y,c,⊲〉∈δ(x,b)

(y, c.b.γ〉 |= ϕ)

A trace semantics of a final coalgebra TM of the functor GX = 2×℘
f
(Γ×X×{⊳, ⊲})Γ

is the set RE of recursively enumerable languages

℘
`

1 + Σ ×℘(TM)
´ // ℘

`

1 + Σ ×℘(RE)
´ // ℘(1 + Σ × Σ∗)

2 ×
“

℘
f
(TM × Γ × {⊳, ⊲})

”Γ

λ′

OO

TM

〈Φ,∂〉

OO

// // RE

r

OO

� � // ℘Σ∗

Mα

OO

with the language coalgebra structure r as before

RE // ℘
`

1 + Σ ×℘(RE)
´

L
� // {⊤|〈〉 ∈ L} ∪ {〈a, U〉 |∂a(L) ∈ U}

Nondeterministic time-bounded Turing machines are based on state spaces
in the form X × N. As explained in section 6.1, such objects can be viewed as monoid
actions, i.e. algebras for the monad N×(−). The requirement is that every computation
from state 〈x,n〉 must halt after at most n steps. This requirement can be enforced by
transforming the coalgebraic form of the machine

X
〈Φ,∂〉 // 2 ×℘

f
(X × Γ × {⊳, ⊲})

X × N
〈Φ<,∂<〉// ℘

f
(X × N × Γ × {⊳, ⊲})

to

Φ<(x,n) = Φ(x)

∂<(x, 0)(a) = ∅

∂<(x,n + 1)(a) = {〈y, n, b, ♦〉|〈y, b, ♦〉 ∈ ∂(x)(a)}

The semantics of TM now induces a semantics of TM<

(x, 0, γ |= ϕ) = Φ(x)

(x,n + 1, b.γ |= d.ϕ) = Φ(x) ∨

∨
_

〈y,c,⊳〉∈δ(x,b)

(y, n, γ |= c.d.ϕ)

∨
_

〈y,c,⊲〉∈δ(x,b)

(y, n, c.b.γ |= ϕ)

13 We assume that the states are in the form 〈x, γ〉 ∈ X × Γ⊕, but write the semantic
definition using the transition function δ, rather than δ⊕.

Remark. A precisely bounded Turing machine is required to halt precisely n steps
after a state 〈x,n〉. This is captured by setting

Φ<(x, n) =

(

Φ(x) if n = 0

⊥ otherwise
(10)

and consequently dropping the “Φ(x)” part from the “n + 1”-clause of the semantics.
Precise and imprecise semantics distinguish the same class of languages [22, prop. 7.1].

Nondeterministic polynomial-time Turing machines14 are based on state
spaces in the form X × Z[u], where Z[u] is the ring of polynomials with integer coeffi-
cients. The requirement is now that every computation from state 〈x, p〉 over a word α
must halt after at most p(|α|) steps, where |α| is the length of α. Each Turing machine
and every polynomial induce a polynomially-bounded machine

X
〈Φ,∂〉 // 2 ×℘

f
(X × Γ × {⊳, ⊲}) p(u) ∈ Z[u]

X × Z[u]
〈ΦNP,∂NP〉// ℘

f
(X × Z[u] × Γ × {⊳, ⊲})

(11)

to

ΦNP(x, p) = Φ(x)

∂NP(x, p)(a) = {〈y, p − 1, b, ♦〉|〈y, b, ♦〉 ∈ ∂(x)(a)}

with a semantics based on the time bounded semantics definition:

(x, p, γ |= ϕ) =
`

x, p(|ϕ|), γ |= ϕ
´

Remark. The functions used to limit the complexity of computations need to be con-
strained: they need to be easily computable themselves, positive, etc. For simplicity,
we just consider polynomials. Clearly, those that are not monotone increasing, or take
negative values, induce trivial, unsatisfiable constraints on machines.

The coalgebra of the NP-languages is now obtained by testing the coalgebra15

TMNP = TM × Z[u]

℘
`

1 + Σ ×℘(TMNP)
´ // ℘

`

1 + Σ ×℘(NP)
´ // ℘(1 + Σ × Σ∗)

2 ×
“

℘
f
(TMNP × Γ × {⊳, ⊲})

”Γ

λ′

OO

TMNP

〈ΦNP,∂NP〉

OO

// // NP

r

OO

� � // ℘Σ∗

Mα

OO

14 Deterministic polynomial-time Turing machines are in the form X
〈Φ,∂〉 // 2 × (X ×

Γ × {⊳, ⊲})Γ . Adjoining the time bounds and the polynomial bounds, in exactly
the same way as to nondeterministic machines, leads to the language class P.

15 This is a coalgebra in the Kleisli category for the monad (−) × Z[u]. It is not final,
but the semantics definition does not require finality.

The structure TMNP

〈ΦNP,∂NP〉// 2 ×
“

℘
f
(TMNP × Γ × {⊳, ⊲})

”Γ

is derived from the

structure 〈Φ, ∂〉 by transformation (11).

