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Abstract We apply the derivational method of protocol verification to key distribution
protocols. This method assembles the security properties of a protocol by com-
posing the guarantees offered by embedded fragments and patterns. It has shed
light on fundamental notions such as challenge-response and fed a growing tax-
onomy of protocols. Here, we similarly capture the essence of key distribution,
authentication timestamps and key confirmation. With these building blocks, we
derive the authentication properties of the Needham-Schroeder shared-key and
the Denning-Sacco protocols, and of the cores of Kerberos 4 and 5.
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1. Introduction
Key distribution is one of the most studied themes in security. The prob-

lem and the basic ideas for the solutions were first described in Needham and
Schroeder’s seminal 1978 paper [12]. On a network of computers, the users
and processes often need to access remote resources. In order to prevent unau-
thorized use, these accesses need to be authenticated, and often protected by
encryption. Key distribution protocols cater to this need by providing partici-
pating entities with a fresh shared key for direct and secure communication.

The most popular key distribution protocol is Kerberos. It was designed
at MIT, originally just to protect the network services provided by Project
Athena, an initiative developed in the eighties to integrate computers in the
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MIT curricula [17]. Distributed for free, it subsequently achieved a widespread
use beyond MIT. While its earlier versions were not always suitable for large
scale applications, versions 4 and now 5 have been redesigned for large sys-
tems [14, 15].

In the present paper, we present a formal reconstruction of the developments
leading up to the Kerberos protocols. The starting point can be found in the
original Needham-Schroeder Shared Key (NSSK) protocol, proposed in [12],
which motivated the very idea of the Authentication Server. Along the way,
the Denning-Sacco attack and protocol [4] championed timestamp-based se-
curity.1 At their core, Kerberos 4 and 5 combine and extend these ideas into an
industrial-strength single-logon authentication infrastructures [14, 15].

We recast these conceptual steps in the formal framework of the protocol
derivation system, that evolved through [3, 10]. Such logical reconstructions of
development histories allow classifying protocols according to the underlying
security components and concepts. The resulting taxonomies then provide a
foundation for a practical framework for secure reasoning, where the results
of previously achieved protocol development efforts are available for reuse,
refinement and composition. One such framework is being implemented as a
tool, the Protocol Derivation Assistant, with all such reconstructions available
as reusable libraries. In previous work, we have looked at electronic commerce
protocols [3] and group protocols [10]. The protocol taxonomy obtained for
them summarized recurrent security practices and supported recombining them
to derive further protocols.

Presently, we only derive the basic components of the Kerberos protocols
and their authenticity properties. The actual deployed protocols chains several
(at least two) rounds of such components, bound together by secret data. The
issues leading up to this composition, and arising from it, will be studied in a
sequel paper.

This work is organized as follows: in Section 2 we explain the protocol
derivation infrastructure. We use it to express the basic key distribution mech-
anism in Section 4. We extend in the direction of NSSK in Section 4 with
nonce-based recency and key confirmation. We extend in a different direction
with timestamp-based recency in section 5 obtaining the Denning-Sacco proto-
col as well as Kerberos 4 and 5. Section 6 concludes with statements of future
work.

2. Protocol Composition System
We outline the methodology underlying our analysis in Section 2.1 and for-

malizes the resulting framework, that we call the Protocol Composition System,

1Needham and Schroeder proposed an alternative fix to NSSK that does not rely on timestamps in [13].
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Figure 1. Overview of the Derivation of Key-Distribution Protocols

in Sections 2.2–2.5. It should be noted that, while the Protocol Composition
System is clearly inspired by our previous work [3, 10], a number of notions,
such as ???2, are novel. Therefore, the following material provides more than
a review of established concepts.

2EdNote: spell out.
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2.1 Overview
As a principal A executes a protocol P , the events she observes locally

(receiving a messages, comparing a component with an expected value, etc)
allow her to make deductions about the actions of the principals she is interact-
ing with. This implicitly identifies a class RA of possible runs, each of which
intersperses her own actions with compatible actions by the other participants.
As an authentication property Prop also identifies a class RProp of legal runs
for P , the verification task traditionally reduces to showing that RA is con-
tained in RProp, and similarly for the other parties in the protocol. Every run
inRA but not inRProp is an attack on A with respect to Prop.

We take a different approach: rather than comparingRA with the legal runs
of a given authentication property, we synthesize a logical expression ΦA de-
scribingRA. This explicit representation is carefully engineered to be compo-
sitional: we dissect A’s observations into elementary components and give a
logical representation of the property they each realize (their raison d’être in a
protocol). We similarly give a logical justification of the various mechanisms
that allow combining components into bigger protocol fragments, and in par-
ticular of what properties emerge from the properties of the parts. By iterating
this process all the way to A’s original observations, we derive a formula, ΦA,
that in a strong sense describes the properties ofRA. Indeed, this constructions
provides us with a clear view of the properties contributed by each component
and whether they propagate to ΦA. We often restrict our attention to interesting
scenarios by assuming, for example, that other principals behave honestly, or
that a certain key has not been compromised. Note that these assumptions are
elective.

Rather than checking that a protocols satisfies a given property Prop, our
approach enumerates the properties supported by a protocol based on its con-
struction. Whenever an expected property is not manifested, we can rapidly
point to a missing component or a composition mechanism failing to propa-
gate it, and produce a counterexample, as done in [10]. We can also scruti-
nize the formula ΦA summarizing the possible runs of each principal A in the
light of a well-known authentication property, such as matching histories [5]
or agreement [9]. We do not, however, formalize traditional properties Prop
as formulas in our logic for formal comparison with the deduced formulas ΦA

(this will be for another paper).
A crucial aspect of our approach is that component-formulas pairs can be

reused whenever they occur in another protocols. Even more interesting is the
fact that the composition operations for fragments and properties can be made
systematic, which gives rise to protocol taxonomies [3]: a rational classifica-
tion of protocols that not only aides our understanding of these complex ob-
jects, but also helps choosing or devising a protocol based on desired features
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and properties. We are working on a tool that will assist us building taxonomies
that are much larger than what we have so far been able to construct by hand.3

Below, we give the necessary definitions to formalize the notions leading to
the set of possible runs RA deducible by a principal A and the corresponding
formula ΦA. We define the basic vocabulary of terms, actions and protocol
specifications in Section 2.2. We introduce dynamic concepts such as runs and
observations in Section 2.3. Section 2.4 sets the stage for the logical expression
of the set of possible runs deducible from an observation, while Section 2.5
provides the logical means to perform such deductions. The remainder of this
paper will apply these definitions in the study of key distribution protocols,
starting from basic concepts all the way to Kerberos.

2.2 Syntactic Categories
In this section, we present the formal syntax used in the Protocol Composi-

tion System. In particular, we define principals, terms, patterns, actions, roles
and protocols. These notions will be used in the sequel to define dynamic no-
tions such as runs and local observations, and deductive reasoning will operate
on them.

Principals. We model principals as a partially ordered set, or poset,
(W,b), whereW enumerates the principals we are working with and the sub-
principal relation b is a reflexive partial order on them. The subprincipal rela-
tion can represent, as needed, access to information or resources, or subsume
e.g. the relations “speaks for” [1, 8], or “acts for” [11], or model groups and
coalitions of principals. We will make limited use of this relation in this paper.
We denote the class of variables ranging over principals with VarW . We write
A,B, S, . . . for generic principals, and use capital letters towards the end of
the alphabet for elements of VarW .

Terms. The set T of terms is an abstract term algebra constructed over
a set of variables VarT and a set of operators OpT (some of which may be
constants). Principals are a subclass of terms, i.e.W ↪→ T (and similarly for
principal variables). We also assume the standard classes used in modeling
cryptographic protocols: Nnc,Key,Time . . . ↪→ T for nonces, keys, time-
stamps, and so on. We write m for a generic message, but use k, n, t, etc, for
keys, nonces, timestamps and other specialized messages. The letters x, y, z,
. . . will denote variables. In this paper, we will rely on two specific construc-

3EdNote: insert a URL for the tool?
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tors:

: Key × T → T (k m is the encryption of m with k)
, : T × T → T (m,m′ is the concatenation of m and m′)

but T may contain more. The standard subterm relation @ endows terms with
the structure of a poset (T ,@).

Patterns. A pattern is a term p together with a list of distinguished vari-
ables ~x occurring exactly once in p that will be interpreted as binders — pmay
contain other variables. We mnemonically write this pattern as p(~x) but will
often keep ~x implicit when clear from the context. The set PT of patterns on
T is therefore defined as

PT =
⋃
n∈N

(T × VarnT )

We further restrict the class of admissible patterns to account for non-invertible
cryptographic operations: for example, we reject patterns of the form “x m”
which would allow extracting the key used to encrypt the term m.

Actions. Principals participate in a protocol by performing atomic ac-
tions. The set Σ of actions is generated from the set of terms T and the set of
principalsW by the following constructors:

Action Constructor Form Informal meaning

send T ×W2 〈〉↪→ Σ 〈m : A→ B〉 The term m is sent, purportedly from
A to B

receive VarT × Var2W
()
↪→ Σ (x : Y → Z) A term, source and destination are re-

ceived into the variables x, Y , and Z

match T × PT
/
↪→ Σ (m/p(~x)) The term m is matched with the pat-

tern p(~x), binding ~x
new VarT

ν
↪→ Σ (ν x) A fresh value is created and stored in

the variable x
now VarT

τ
↪→ Σ (τ x) The system time is read and stored in

the variable x

These actions will take the center stage in this paper. We will occasionally
introduce internal actions to model protocol specific operations (e.g., looking
up an internal table). Other actions can be added as needed. The variables
x, Y, Z in receive, ~x in match, and x in new and now are binding occurrences,
so that any subsequent mention in an expression involving actions (e.g., roles
below) are interpreted as bound by them. We adopt the standard definitions of
free and bound variables in an action. We will often use partial descriptions
of actions, and elide e.g., the source and the destination, as in 〈m〉, or (y), or
other parts, as in 〈A→ C〉, or (x : A→).
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We will formalize the meaning of these actions in the next section, where
we present the execution model of the Protocol Composition System.

Roles. A role is the complete code that a principal executes on her host
to engage in a given protocol. We model a role as a collection of actions
performed by a principal. We allow actions to be composed either sequentially
(using “;” as a role constructor) or concurrently (using “⊗”). The set R of
roles is then defined as R = W × Σ(;⊗), where the second component is the
algebra stemming from Σ and operations “;” and “⊗”. We tacitly use “;” as an
associative operator, while “⊗” will be viewed as associative and commutative.

Sequential composition “;” orders the actions in a role, while “⊗” specifies
clusters that can be executed in parallel. A binder occurring in an action has
scope over the actions in all paths stemming from it. Care should be taken so
that no variable is in the scope of more than one homonymous binder when
disambiguation is not possible: we avoid this problem completely by requiring
that every binder uses a different variable name. The free variables of a role
are its parameters, and should be instantiated prior to executing the role. The
principal executing the role is a distinguished parameter.

As an example, we show the server role of the Denning-Sacco protocol,
further explored in Section 5:

DS Server [S] = (m0 : A→ S0); (S0/S); (m0/A,B);
(getKey(A,KAS)⊗ getKey(B,KBS));
(ν k ⊗ τ t);
〈KAS(B, k, t,KBS(k,A, t)) : S → A〉

This role has one parameter, the name of the server S executing it. With the
actions on the first line, S receives a messagem0, purportedly from some prin-
cipal A (this is the binding occurrence for this variable), he verifies that he was
indeed the intended recipient, and thatm0 is a pair withA as its first component
(this occurrence is in the scope of the A in the receive action) and some name
B as its second component. The second line invokes some internal actions to
retrieve the keys S shares with A and B, and bind them to the variables KAS

and KBS respectively. Notice that this specification allows the concurrent ex-
ecution of these two actions. On the third line, S generates a key, binding it
to k, and looks up the current time into t, again concurrently. The last action
sends the shown message.

Protocols. A protocol is a collection of roles that covers the actions of
all parties involved in the protocol. In the case of Denning-Sacco, the protocol
consists of three roles: the above server role, an initiator, and a responder.
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2.3 Execution Model
This section defines the dynamic concepts of runs and local observations.

We start with the preliminary notions of processes (a minimally connected col-
lection of actions), then associate every receive action with a send action in the
notion of run, then target the proper instantiation of variables by defining exe-
cution, and finally distill the local observation of principal from an executable
run.

Events. An event associates an action to a principal, that we will under-
stand has having executed this action. We denote an event by subscripting the
action with the principal in question, writing for example 〈m : A → B〉A for
the event of principal A performing the action 〈m : A→ B〉.

Processes. A process is a partially ordered multiset (pomset) of events,
i.e., actions attributed to principals. More precisely, given a set of action labels
L, a process L is an assignment

L L=⇒ Σ×W

such that

(L, <) is a well-founded partial order.

` < `′ implies LW(`) b LW(`′) or LW(`) c LW(`′).

where LW(`) is the name of the principal in event L(`).
The relation < orders the events in a process so that one event can be de-

scribed as occurring before another in an abstraction of the temporal dimension
of execution. Events that are not related by < can have occurred in arbitrary
order. The first condition simply prevents cycles.

The second condition specifies that only actions pertaining to the same prin-
cipal, or one of its sub-/super-principals, can be ordered in this way (we will
extend this ordering across principal cliques shortly). Like strands [7], related
events in a process pertain to a single principal (or group of related principals).
Unlike strands, processes are not bound to a single protocol execution, but may
order events executed by a principal in several instances of the same protocol,
possibly in several roles, and even while executing several different protocols.
The idea is that a principal will know in what order she has executed actions,
even when several protocols are involved. However, notice that the events of
a principal do not need to be totally ordered: events can be unrelated if their
exact order does not matter, or if the underlying execution model is actually
parallel. Finally, processes may contain variables while strands are always
ground.
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In the sequel, processes and related notions will generally arise out of in-
stantiated protocol roles. This will always be the case when reasoning about
the observations of a principal, or when assuming that a principal is honest.
However, the actions attributed to a principal that is not assumed to be honest
may live outside of any role.

Before moving on, a few notational conventions will prove enormously
helpful. We will often abuse notation and denote a label ` ∈ L in a pro-
cess L by the event L(`) it points to. Furthermore, we will often speak, for
example, of “the event 〈m : A→ B〉A” in the context of a process L, although
there may, of course, be several events of this form in L. We will resurrect
labels only in case of ambiguity. We will also sometimes blur the distinction
between an action and an event when the associated principal can easily be
reconstructed, and speak of “the event 〈m : A → B〉” for example. Finally,
we will make liberal use of the convention of dropping parts of an action that
can be reconstructed, and therefore may further streamline this example by
speaking of “the event 〈m〉”.

Several representations of processes and derived notions will prove conve-
nient in different circumstance. Of course, a process is a directed acyclic graph
(DAG) with events as nodes and < as edges. Here is a simple example:

(νy)A′ // 〈f(x, y)〉A′

((QQQQQQQQ

(νx)A

99ssssss
// (z)A // 〈f(x, y)〉A

(u)B

where the arrows flow in the opposite direction of < and we assume A′ b A.
We will sometimes explicitly render the ordering <, obtaining

 (νx)A <
[

(νy)A′ < 〈f(x, y)〉A′
(z)A

]
< 〈f(x, y)〉A

(u)B


for the above example. Finally, we will occasionally use the conventions out-
lined in Section 2.2 to express roles, rendering< as “;” and using “⊗” to denote
the absence of an ordering. The above example takes the following succinct
form:

((νx)A; (((νy)A′ ; 〈f(x, y)〉A′)⊗ (z)A); 〈f(x, y)〉A)⊗ (u)B
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It should be noted that not every DAG can be expressed in either of
the last two notations (unless one is willing to repeat nodes, which
would clash with our conventions). For example, the DAG at right
cannot be rendered in these ways.

a // b

c

==zzzzzz // d

Runs. A run of a process L assigns to each of its receive events a corre-
sponding send event. Formally, a run is thus a pair

〈L,
√

: recvs(L) −→ sends(L)〉
(x:Y→Z)A 7→ 〈m:S→R〉B

such that √
(x) 6> (x)

The condition forces the send event mapped to a receive event to have occurred
before this event. It prevents deadlocks, and protects the scope of the receiving
variables (which is to the right, i.e., up in the partial order).

A run can also be viewed as an extension of the order < of events in a
process by adding

√
(x) < (x) for every receive action (x) ∈ L. We shall

thus represent a run 〈L,
√
〉 simply by a process L where each receive event

(x) has a unique predecessor 〈m〉 =
√

(x). A run of a process thus boils
down to a Lamport order of actions.4

We pointed out earlier that a process corresponds to a collection of strands.
In the same vein, a run is akin to a bundle in the strand world [7]. The main
difference between our runs and bundles is that in the present framework, the
variables can be used to follow the execution of the run, and track the data as
it flows through it.5

Execution. The above definition falls short of capturing the intuitive
notion of a run as a snapshot of the execution of a protocol. Indeed, while
our runs correctly map receives to sends, they do not ensure that variables are
properly handled. In particular, they allow events to take place past a failed
match. Rather than giving syntactic restrictions to characterize a well-formed
executable run, we keep our runs the way they are and define a notion of exe-
cution on them.

4This is in contrast with the representation of runs as process reductions à la Chemical Abstract Machine,
used in the cord calculus [3, 6].
5If in a bundle a principal receives, say, the number 2, and then sends out the number 3, it is impossible to
tell whether his program says to receive x and then send x + 1, or to send 2x − 1, or perhaps to send 3
independently on what he receives.
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A slice (L�, L�) is an order-conscious partition of a run 〈L,
√
〉, i.e., for

every l1 ∈ L� and l2 ∈ L�, it is not the case that l2 < l1. Every path in L will
have a prefix in L� and the rest in L�. We mark the meeting point with H.

Executing a run will consist of moving the markers H rightward starting
from an initial slice (∅, L) where there is a marker at the beginning of every
path. The events in a run are executed in order: each a ∈ L can be executed
only after all b < a have been executed. Execution on any given path is speci-
fied by the following table:

Action Form If . . . . . . then do . . . . . . and write

send H〈m : A→ B〉C FV (m) = ∅ 〈m : A→ B〉HC
receive H(x : Y → Z)D

p
(x : Y → Z)D

= 〈m : A→ B〉C
in all a > (x : Y → Z)D set
a(x := m,Y := A,Z := B)

(x : Y → Z)H
D

match H(m/p(~x))D
∃~u s.t. m = p(~u) in all a > (m/p(~x)) set a(~x := ~u) (m/p(~x))H

D

. . . otherwise . . . . . . halt on this path H(m/p(x))D

new H(νx)D (νx)H
D

now H(τx)D (τx)H
D

Note that execution on a path will stop when a match fails. It can however
proceed on other paths.

Remark 1 In principle, a run all of whose actions have been successfully
executed records all of the executed assignments. This distinguishes the com-
putational assignment operation x := m from the algebraic substitution op-
eration (m/x). When substituting m for a variable x in a term a, we simply
replace the occurrences of x by m; the result a(m/x) generally bears no trace
of x (unless it occurred in m). In contrast, when assigning m to x, we link x to
m, thereby destroying any previous links of x, yet we do not erase the name of
x itself. Indeed, in computation, x can later be reassigned to another term m′.

When executing a run, the variables are assigned, but not destroyed. In this
way, the data flow of a run is completely recorded, since each binding actions
just performs assignments on some previously unassigned variables.

Executable Runs. The left component L� of a slice (L�, L�) of a run
〈L,
√
〉 satisfies the intuitive notion of run as a snapshot of the execution of a

protocol. We adopt it as the definition of an executable run, and will denote
such entities with the letter Q, variously annotated. From now on, all the runs
we will be working with will be executable and we thus will generally drop
this qualifier.

Local Observations. The local observation of a principal A consists of
all the events performed by A in a run Q. It is simply defined as the projection
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of Q with respect to A:

QA = {` ∈ Q | LW(`) = A}

2.4 Logical Annotations
Having defined the notions of (executable) run and observation, we will now

define a logical language to talk about these entities. This language applies the
connectives and quantifiers of first-order logic to a base set of predicates. We
will then be able to define a judgment that verifies that a formula constructed
in this way is valid with respect to a run. It will then be a short step to use a
formula to characterize all the runs in which it is valid, and to anchor it to the
local observations of a principal.

Predicates. Our logical language contains just enough tools to query a
run: the event predicates we will be relying on are

a Event a has occurred
a < b Event a has occurred before event b
a = b a and b are the same event

We will also admit the various relations participating in the definition of prin-
cipals (e.g., A b B), terms (e.g., m @ m′), etc, as additional predicates.
A formula combines these atomic predicates by means of the traditional con-
nectives and quantifiers of first-order logic. We will allow quantification over
terms and principals appearing in an event, and, with a slight abuse of notation,
over events themselves.

Formulas can be used to describe runs or portions of runs: simply turn a
pair of connected events “a → b” into the atomic predicate a < b, add the
occurrence predicate a for any isolated event “a”, and glue them together with
∧. We write ΦQ for the formula obtain in this way from a run Q. For example,
the following formula captures the first few steps of an instance of the Denning-
Sacco server role from Section 2.2 for a given server S:

(m0 : A→ S0)S < (S0/S)S ∧ (S0/S)S < (m0/A,B)S
∧ (m0/A,B)S < getKey(A,KAS)S
∧ (m0/A,B)S < getKey(B,KBS)S
∧ getKey(A,KAS)S < (ν k)S ∧ getKey(A,KAS)S < (τ t)S
∧ getKey(B,KBS)S < (ν k)S ∧ getKey(B,KBS)S < (τ t)S

An automated theorem prover can make use of this formula, but it looks rather
obscure to a human. For this reason, we will rely on generous notational con-
ventions and express it in the more readable format:

(A,B : A→ S)S <
[

getKey(A,KAS)S
getKey(B,KBS)S

]
<

[
(ν k)S
(τ t)S

]
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The following table lists some of the least obvious abbreviations we use:

This . . . . . . abbreviates . . . Notes

(p)A (x)A < (x/p)A Binders in p usually implicit
((p))A (x)A < (x/p′)A ∧ p v p′ Same binders in p and p′

〈〈m〉〉A 〈m′〉A ∧m v m′
〈m〉A< ∃a = 〈m〉A ∧ ∀b = 〈〈m〉〉B. a ≤ b
〈〈m〉〉A< ∃a = 〈〈m〉〉A ∧ ∀b = 〈〈m〉〉B. a ≤ b
a ≺ b b⇒ a < b

Especially in logical statements, we will often omit the intended sender and
recipient in a send or receive action when unimportant or easily reconstructible
from the context.

Validation. Given a run Q and a formula Φ, a first task is to verify if Φ is
valid in Q. We express this classical model checking problem by means of the
judgment

[Q] Φ

As usual, the definition of validity is inductive, with the following table ex-
pressing the validity of our basic event predicates:

Predicate Judgment If and only if Meaning
event [Q] a a ∈ Q a has occurred in Q
order [Q] a < b a < b ∈ Q a has occurred before b in Q
equality [Q] a = b a and b are the same event in Q

The relational predicates on terms and principals are self-validating. The logi-
cal connectives and quantifiers are processed in the usual way.

Statements. If only a formula Φ is given, the above judgment can be
used to implicitly define the set of all the runs that satisfy Φ:

RΦ = {q : [q] Φ}

In particular, if Φ describes the observationsQA of a principalA in a given run
Q, a formula we wrote ΦQA earlier, the above definition allows us to charac-
terize all the runs q that are compatible with QA:

RA = {q : [q] ΦQA}

While this satisfies the requirement at the beginning of this section, expressing
RA in this way sheds little light on the structure that a run must have to be
compatible with A’s observations. In the next section, we will instead strive to
explicitly characterize these runs by means of a formula Φ of maximal gener-
ality. Φ will be such that:

RA = {q : [q] ΦQA} = {q : [q] ΦQA ∧ Φ}



14

We will generally keep ΦQA explicit by expressing Φ as the logically equiva-
lent ΦQA ⇒ (ΦQA ∧ Φ).

We will deduce this formula from the axioms and inference rules described
in the next section to get as clear a picture as possible of RA. By having Φ be
an implication Φ′ ⇒ Φ′′, we can characterize important or interesting portions
of RA that satisfy the assumption Φ′: we will typically assume the honesty of
principals or the fact that a key has not been compromise. Note that ΦQA ⇒
(ΦQA ∧ (Φ′ ⇒ Φ′′)) is logically equivalent to (ΦQA ∧ Φ′) ⇒ (ΦQA ∧ Φ′′).
Given the prominence of this notion in the rest of our work, we will abbreviate
ΦQA ∧ Φ as

A : Φ

Φ is then a description of the runs compatible with A’s observations. We will
often call Φ the knowledge of A. As we said, Φ will generally have the form
ΦQA ∧ Φ′ ⇒ ΦQA ∧ Φ′′.

2.5 Axioms and Rules
Let A be a principal executing the role ρ of a protocol P . Given a run Q

and local observation QA for A’s execution of ρ, this section presents the tools
to synthesize a formula Φ such that A : Φ, i.e., that characterizes the runs
compatible with QA (possibly restricted by appropriate assumptions). In order
to do so, we isolate the elementary constituents of QA (for example challenge-
response exchanges) and produce formulas that describe the runs compatible
with them (the necessary behavior of a counterpart in the case of challenge-
response). We then combine these formulas into larger formulas corresponding
to bigger parts of QA, all the way to A’s original observation. An intuitive
picture of this process is given below:

QA

x� xxxxxxx

xxxxxxx

�&
EEEEEE

EEEEEE Φ9A

{{{{{{{

{{{{{{{ \d

AAAAAAA

AAAAAAA

Q1
A

�	 �����
�����

�� ��
33333

33333
Q2
A

�
 �����
�����

��
22222

22222 Φ1
AI

�����

�����
KS U]

22222

22222
Φ2
BJ

�����

�����
T\

00000

00000

Q11
A ??Q12

A ??Q13
A ??Q21

A @@Q22
A @@Φ11 Φ12 Φ13 Φ21 Φ22

More precisely, the derivation of a formula Φ characterizing the runs com-
patible with a local observation QA draws from two ingredients:

Axioms An axiom maps an elementary observation with a formula expressing
the necessary behaviors of the interacting parties. Axioms are universal
predications about basic patterns of events. In the illustration above,
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the axioms corresponds to the single arrows connecting the leaves of
the trees. We will spend the rest of this section justifying a number of
common axioms.

Transformations A transformation maps a method for building a complex ob-
servation from simpler ones to a method for upgrading the formulas as-
sociated with them to a formula describing the resulting observation. A
transformation may extend a partial observation with additional events,
or enrich individual events with new components, or combine events by
merging common terms. We will see several transformations in the sec-
tions to come. Had we found a good way to draw transformations in the
above illustration, they would relate the branches exiting an inner node
on the left-hand side to the branches entering the corresponding node on
the right-hand side.

Before we describe some of the most fundamental axioms of the Protocol
Composition System, a few definitions will save us some space.

Honesty Assumption. In the sequel, we will occasionally need a prin-
cipal A deducing A : Φ to assume that another principal B is honest in order
to draw interesting or meaningful conclusions. By this, we mean that B does
not deviate from his assigned role ρ′ as he interacts with A. For the sake of
illustration, let ρ′ be completely sequential:

ρ′[B] = b1; . . . ; bi; . . . ; bn

Therefore, ifA is able to deduce that an honestB has executed any given action
bi in this role, she can safely infer that he has executed all the actions leading
to bi in ρ′ as well. The resulting formula for the above example is as follows:

Honestρ′ B , (b1)B ≺ . . . ≺ (bi)B ≺ . . . ≺ (bn)B

(Recall that a ≺ b abbreviates b ⇒ a < b.) We will generally keep the role ρ′

implicit. Clearly, honesty formulas are associated with every role, not just the
sequential ones. For example, the honesty definition for the server role of the
Denning-Sacco protocol in Section 2.2 is as follows:

(A,B : A→ S)S ≺
[

getKey(A,KAS)S
getKey(B,KBS)S

]
≺
[
(ν k)S
(τ t)S

]
≺

≺ 〈KAS(B, k, t,KBS(k,A, t)) : S → A〉S

(We are relying on the abbreviations in Section 2.4 for succinctness.)
The honesty definition will be used exclusively as an assumption so that

A : Φ will often have the form A : Honest B ⇒ Φ′. We will see that some
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principals need to be assumed honest for the formula inferred from A’s obser-
vations to be compatible with the legal runs of the protocol, while other prin-
cipals may be dishonest and yet cannot substantially deviate from the protocol
given A’s observations.

Uncompromised Key Assumption. Another important assumption
we will need to make is that certain keys have not been compromised. A
shared key k is uncompromised for a group G of agents if the only principals
that can perform an encryption or a decryption using k are the members of G.
In symbols,

uncompromised(k,G) , 〈〈k m〉〉X< ⇒ X ∈ G
∧ (x/k y)X ⇒ X ∈ G

Notice that the body of this definition expresses the semantics of shared-key
cryptography: the first line says that only members of G can produce an en-
cryption using k and send it in a message, while the second line says that only
these principals can use the pattern k y to access the contents of a term en-
crypted with k. Notice also that this expression defines the binding between a
key and the principals who can use it.

In this paper, we will use uncompromised exclusively as an assumption.
Moreover, we will make such an assumption for every key we need to believe
is not compromised as our system does not contain any axiom explaining how
shared keys ought to be used.

The reasons for this choice are rather subtle and deserve further explanation.
Key distribution protocols juggle two long-scrutinized properties: secrecy and
authentication. The distributed key can be secret only if it is transmitted in-
side authenticated messages. In turn, a message can be authenticated only if
it protects its contents using a secret key, which brings us back to the prob-
lem of distributing this secret key. This is a chicken and egg situation. The
only way to break this circularity is to assume either the existence of a shared
secret key or the existence of an authenticated channel. We choose the first
alternative, although the second option (e.g., using a private communication
medium) would be equally valid. Assuming certain long-term keys to be se-
cret (i.e., uncompromised) immediately yields that any message they encrypt
are authenticated.

Now, a key distribution protocol transmits a freshly generated key k along
these authenticated channels to some principals A and B. The next ques-
tion becomes how to prove that the protocol ensures the secrecy of k, i.e.,
that uncompromised(k, [A,B]) holds. This question will be the focus of a se-
quel to this paper, and we shall not address it further here. There, a proof of
uncompromised(k, [A,B]) will permit discharging an assumption of uncompromised(k, [A,B]),
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which is very useful for staged protocols such as Kerberos, where a key is dis-
tributed for the purpose to protecting another key.

A number of authors have proposed techniques to prove secrecy properties,
e.g., Schneider’s rank functions [16] and Thayer et al’s ideals [18] just to cite
a few. At heart, they are all based on a form of closed-word assumption which
limits the class of available actions and then rely on an inductive argument to
prove that the key cannot be revealed. The present paper is instead open-ended:
all events are allowed unless expressly forbidden (e.g., by an uncompromised
assumption).

We will now discuss a number of axioms and axiom schemas that will pro-
vide some of the foundation for the rest of the paper.

Freshness axiom. We start with a general axiom describing the behavior
of the (ν n) action in logical terms:

(ν n)B ⇒ ∀aA.
(
n ∈ FV (a) ⇒ (ν n)B < aA

∧
(
A 6= B ⇒ (ν n)B < 〈〈n〉〉B < ((n))A ≤ aA

))
(new)

The first part implies that ν is a binder, which means that any event a men-
tioning n necessarily occurs after (ν n) (recall that we required binders not
to recycle variable names for simplicity). The second line requires that if the
agent B executing (ν n) and the principal A executing a are different, then B
must have used a send action to transmit n and A must have acquired it by
means of a receive action; said in other words, values freshly generated using
ν can only be transmitted using the send/receive mechanism.

“Not Me!” Axiom. The next axiom is equally general: it says that
if an observer A is aware that some X has executed an action a, but A never
executed any such action, then X cannot be A:

A : aX ∧ ¬aA → X 6= A (notme)

This axiom relies on the fact that an observer is aware of all of its actions. It
will turn useful, for example, in conjunction with the uncompromised assump-
tion for A to deduce that an encrypted message originated by the principal she
is sharing the key with (and not herself).

Send-Receive Axiom Schemas. Next, we examine a general class of
axioms allowing a principal A to infer the existence of a specific send event
matching a receive she has observed. They are all subsumed by the following
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schema:

A : ∃X.∀~y. ((fAX(~y)))A ∧ Φ(X, ~y)

⇒ 〈〈fAX(~y)〉〉X< < ((fAX(~y)))A ∧ Ψ(X, ~y) (sr)

It says that A knows that, for some principal X , the message structure fAX

assures that, if she receives a message containing fAX(~y), where X and ~y sat-
isfy some precondition Φ, thenX must have originated fAX(~y), and moreover
X and ~y do satisfy some postcondition Ψ.

A number of important axioms capturing the semantics of interaction through
send and receive events are subsumed under this schema, by instantiating fAX ,
Φ and Ψ. We will now examine a few.

Receive Axiom. In the simplest case, where Φ and Ψ are taken to be trivially
true, and fAX is arbitrary, the axiom just says that everything that is received
must have been sent by someone:

A : ((m))A ⇒ ∃X. 〈〈m〉〉X< < ((m))A (rcv)

Challenge-Response Axiom Schema. Perhaps the most useful instance of (sr)
is another axiom schema describing the requirements for nonce-based challenge-
response exchanges. It is obtained for:

fAX(y) = rAX(y)
Φ(X, y) = Φ′ ∧ (ν y)A < 〈〈cAX(y)〉〉A< < ((rAX(y)))A
Ψ(X, y) = (ν y)A < 〈〈cAX(y)〉〉A< < ((cAX(y)))X < 〈〈rAX(y)〉〉X<

where cAX is the challenge structure issued by A, rAX is the corresponding
response originated by X , and Φ′ represents some additional precondition,
usually an honesty or uncompromised assumption.

Simplifying yields:

A : Φ′ ∧ (νy)A < 〈〈cAXy〉〉A< < ((rAXy))A
⇒ (νy)A < 〈〈cAXy〉〉A< < ((cAXy))X < 〈〈rAXy〉〉X< < ((rAXy))A

(cr)

As an example of an actual instance of this axiom, we consider the case in
which cAX is the identity (the nonce is sent in the clear), the response encrypts
the nonce with a key KAX shared between A and X , and Φ′ requires KAX

not to be compromised for A and X . We obtain

A : uncompromised(KAX , [A,X]) ∧
(νy)A < 〈〈y〉〉A< < ((KAXy))A

⇒ (νy)A < 〈〈y〉〉A< < ((y))X < 〈〈KAX y〉〉X< < ((KAX y))A
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A proof of this axiom goes as follows: starting from A’s own observations
(the second line above), axiom rcv entails that some agent Y has originated
〈〈KAX y〉〉. By the uncompromised assumption, Y must be either X or A,
with axiom notme excluding the latter possibility. Axiom new completes the
second line by sandwiching X’s reception of y between A’s transmission of
the nonce and X’s issuing of 〈〈KAX y〉〉.

In the sequel, we will represent a run of this challenge-response exchange
by means of the following diagram:

A X
◦

νy ��
◦ y // ◦

��
◦ ◦

KAX y
oo

Timestamps. Other useful instances of the sr axiom schema describe the se-
mantics of timestamps. Here is one possibility. Consider the following values
for our various meta-variables:

fAX(t) = t

Φ(X, t) = 〈〈t〉〉X<
Ψ(X, t) = honestX ⇒

(
(τ t)A < (τt)X < 〈〈t〉〉X< ∧ ((t))A < (τ t)A

)
Let us instantiate and simplify sr before commenting on it:

A : honestX ∧ 〈〈t〉〉X< < ((t))A
⇒ (τ t)A < (τt)X < 〈〈t〉〉X< < ((t))A < (τ t)A (ts)

The antecedent of this formula assumes that X is honest (which here means
that his expected behavior is to look up a timestamp and send it out),A receives
a message containing an acceptable timestamp t, and she has the certainty that
X has originated 〈〈t〉〉. Given these hypotheses, she can deduce that X had
indeed looked up t and sent it out, and that these actions took place within
what she regards as the window of validity of this timestamp. Here, (τ t)A is
the earliest point in time whereAwould accept t as valid, and (τ t)A is the dual
upperbound. They are events internal to A representing time points calculated
from t by considering what she deems as acceptable clock skews and network
delays. What is important here is that they bound X’s actions by events under
A’s control. In the sequel, we will discharge the assumption that A is certain
that X has sent this timestamp whenever the message is authenticated.

Note that there are other options for giving the semantics of timestamps as
an instance of sr: the above approach will however prove particularly conve-
nient in the sequel.
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Diffie-Hellman. Although we will not make use of this mechanism in this pa-
per, it is interesting to note that the sr axiom schema also specializes to a crude
logical description of the Diffie-Hellman exchange (where, for simplicity, we
have the responder transmit the shared secret in some message). We instantiate
the various schematic variables as follows:

fAX(g, u, y) = uy

Φ(X, g, u, y) = (ν y)A < 〈gy〉A< < (u)A ∧ ¬〈y〉A
Ψ(X, g, u, y) = 〈u〉X< ∧ (¬〈log u〉X ⇒ (gy)X < 〈〈uy〉〉X<)

for appropriate term constructors for exponentiation and discrete logarithm.
Here g is the group generator, y isA’s random number, u isX’s returned value
(u = gz where z is X’s random number), and therefore uy = gyz is the shared
secret. Simplifying and rearranging this time yields:

A : ¬〈y〉A ∧ ¬〈log u〉Z ∧

(νy)A < 〈gy〉A< <

[
(u)A

((uy))A

]
(dh)

⇒ ∃X. (νy)A < 〈gy〉A< < (gy)X <

[
〈u〉X<
〈〈uy〉〉X<

]
<

[
(u)A

((uy))A

]
This formula states that if A receives her counterpart’s share of the secret and
a message containing the secret, and neither exponent has been leaked, then
she can rest assured that some X has received her own gy and send those two
messages.

3. Basic Key Distribution
In this section, we apply the methodology just outlined to obtain the core

protocols and logical guarantees for key distribution. For the time being, we
are only interested in the manner a key server can distribute a fresh key to
clients. We will examine other important aspects of key distribution, namely
recency and key confirmation, in Sections 4 and 5, where we derive NSSK and
Kerberos, respectively.

We warm up in Section 3.1 with an illuminating exercise in futility: having
a server distribute a fresh key to a single principal. We take it as a template for
the more useful two-client setting in Section 3.2.

3.1 One-Party Key Distribution
We begin with a very simple setup consisting of a key server S and one

client A. While the resulting protocol, which distributes a secret key to a sin-
gle principal, makes little sense in practice, it will serve as a useful illustration
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of the concepts introduced so far and help gain familiarity with transforma-
tions. Later, when applying these techniques to more realistic protocols, we
will be able to concentrate on the derived properties rather than on minor tech-
nicalities.

In our initial version of this protocol, both the key server and the client
are given each other’s name as a parameter to their respective roles. A fully
spelled-out specification of these roles is as follows:

KD0
1 server[S;A] = getKey(A,KAS) ; ν k ; 〈KAS k : S → A〉

KD0
1 client[A;S] = (m0 : S0 → A0) ; (A0/A) ; (S0/S) ;

getKey(S,KAS) ; (m0/K
AS k)

(We will abbreviate it shortly.) The server “knows” it should send the new key
k to A because A appears in its parameter list.

A process involving one instance of each of these roles is given by the nodes
and solid lines in the graph below (please ignore everything else for now). We
have written A and S for the instantiating values of the parameters A and S,
and distinguished binders with the same name in the two roles by means of
primes. The expected run of this protocol bridges these two halves by means
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of the dashed arrow.

getKey(A,KAS)S

{KAS :=kAS}
��

(νk)S

��
(m0 : S0 → A0)A

{...,m0:=KAS k,S0:=S,A0:=A}
��

〈KAS k : S→ A〉Soo_ _ _ _ _

(A0/A)A

��
(S0/S)A

��
getKey(S,K ′AS)A

{...,K′AS :=kAS}
��

(m0/K
′AS k′)A

{...,k′:=k}H

Another expression for this process is

getKey(A,KAS) ; ν k ; 〈KAS k : S→ A〉
⊗ (m0 : S0 → A0) ; (A0/A) ; (S0/S) ; getKey(S,K ′AS) ; (m0/K

′AS k′)

The run assigns
√

(m0 : S0 → A0)A = 〈KSA k : S→ A〉S.
An execution of this run accumulates binding variable assignments in an

environment that we have expressed above as annotation to the arrows. By the
time the last action has been executed, this environment contains:

{KAS := kAS, m0 := KAS k, S0 := S, A0 := A, K ′AS := kAS, k′ := k}

By the end of this run, the observations QA and QS of A and S correspond to
the left and right column of the above figure, respectively.

While we hope this demonstrated the definitions in Section 2.3, the remain-
der of this paper will use a leaner notation based on the conventions introduced
in the previous section. This will make our treatment more readable and save
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space. In particular, we will liberally fold matches inside receive actions, oc-
casionally omit senders and receivers, and keep the internal actions getKey
implicit. The roles in this example then reduces to:

KD0
1 server[S;A] = ν k ; 〈KAS k : S → A〉

KD0
1 client[A;S] = (KAS k : S → A)

We also summarize the above run in the following strand-like picture:

A S
◦
νk��

◦ ◦KAS koo

We are now ready to take the point of view of each principal and infer a
formula representing the runs that are compatible with its observations. Let us
take the part ofA first. In our abbreviated notation, the only event she observes
is (KAS k : S → A). Under the assumptions that KAS is uncompromised
for A and S and the honesty of S (derived from his role), A can completely
reconstruct the expected run. In symbols:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
(KAS k : S → A)A

⇒ (ν k)S < 〈KAS k : S → A〉S< < (KAS k : S → A)A

This formula means that, under the stated hypotheses, all runs that are com-
patible with A’s observation must include the shown actions of S, and in the
prescribed order.

The uncompromised hypothesis identifies S as the originator of the trans-
mitted message (A is excluded thanks to the notme axiom) while the honesty
assumption completes the sequence of messages that preceded this send. A
more formal derivation is given by:

QA : (KSA k : S → A)A
(rcv) : 〈〈KSA k〉〉X< < (KSA k : S → A)A

uncompromised(KAS , [A,S]) : X = A or X = S
(notme) : X 6= A
honest S : (νk)S ≺ 〈KSA(k) : S → A〉S

(νk)S < 〈KSA k : S → A〉S< < (KSA k)A

On the other hand, S does not conclude more than he observes since he is
the recipient of no message.
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In this example, A is a parameter in S’s role and S is a parameter in A’s. In
a real system, this would mean that these values appear in some configuration
file on the client and server’s machines. While the former may be acceptable
if there is only one server in the system, the latter is certainly not as a server
should be able to distribute keys to more than one client.

We introduce the discharging transformation DC to transform a role that
gets a value from a parameter into a role that acquires this value as part of the
protocol run. This transformation simply turns a parameter into a binder.6 For
simplicity, take a sequential role [x]ρ; ρ′(x) with parameter x, an action prefix
ρ that does not refer to x, and remaining actions ρ′(x) that may reference x.
Then, DC is defined as follows on this role:

DC[ [x]ρ; ρ′(x) ] , ρ; ax; ρ′(x)

where ax is some action that binds x (most interesting is a receive).7 The
generalization to non-sequential roles is trivial, but harder to typeset.

For example, an instance of DC discharges A in KD0
1 server above by hav-

ing A send her name to S in a request message:

A S
◦ A // ◦

νk��
◦ ◦KAS koo

The roles give a more precise account of the operations of DC:

KD1
1 server[S] = (A : A→ S) ; ν k ; 〈KAS k : S → A〉

KD1
1 client[A;S] = 〈A : A→ S〉 ; (KAS k : S → A)

Observe that KD1
1 server does not have A as a parameter. S obtains A’s name

from the first message, either from the body or from its putative sender at the
implementor’s choice. A simple prefixing transformation is used to have the
client send this message, upgrading KD0

1 client to KD1
1 client. Note that it

does not discharge S as a parameter.
A transformation operates not only on the syntactic specification of a role,

but also on its inferable properties. In its generality, the transformation DC is
rather limited in this respect: it extends the observations of principal executing
the affected role with the action ax — here (A : A → S) — and only influ-
ences the deductions of other principals through its altered honesty assump-
tion. From the point of view of the principal executing the transformed role,

6There are other ways to discharge a parameter x: for example another useful transformation removes a
match (x0/x) against x and replaces other occurrences with x0. This would be how to discharge S in
KD0

1 client above.
7EdNote: Specialize to just receive?
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DC operates as follow on the sequential illustration above, where we make an
intuitive use of the symbols.

A : Φρ < Φρ′ ∧Ψ → Φ′ρ < Φ′ρ′ ∧Ψ′www�DC

A : Φρ < ax < Φρ′ ∧Ψ → Φ′ρ < ax < Φ′ρ′ ∧Ψ′

We will see transformations that have more interesting effects shortly. Note
however that the presence of event ax may enable further inferences.

This makes S’s point of view marginally more interesting than in the first
version of this protocol: upon receiving the first message, he can use axiom
rcv to infer that someone sent it, although not necessarily A:

S : (A : A→ S)S < (ν k)S < 〈KAS k〉S
〈A : A→ S〉X< < (A : A→ S)S < (ν k)S < 〈KAS k〉S

We next examine the property deducible by A: it illustrates the effect of DC
on the other party, and describe the effect of the prefixing transformation. Her
view is summarized by the following formula:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A : A→ S〉A < (KAS k)A

⇒
[

〈A : A→ S〉A
(A : A→ S)S < (ν k)S < 〈KAS k〉S<

]
< (KAS k)A

The two occurrences of 〈A : A → S〉A are the result of the prefixing trans-
formation on the client’s role. The matching receive action (A : A → S)S
is deduced from the honesty of S. Observe that A is unable to correlate her
sending of this message with S’s reception. Indeed, S will perform its role
not in response to A’s request but following the reception of any message of
the form (A : A → S), whoever the actual sender is. Of course, A will not
accept an unsolicited key, but if she sent a request there is no guarantee that S’s
response has any relation to it. While this property does not exactly match the
expected run of this updated protocol, it may be acceptable since A still gets
what she asked for (even if she was not heard). We will examine variants of
this protocol that enforce stronger guarantees between request and response.

3.2 Two-Party Key Distribution
With this exercise under our belt, we will now examine protocols in which

a server S generates a key k and distributes it to two parties A and B. This is
the setting underlying NSSK and Kerberos, which we will study in sections to
come. Note that our analysis generalizes to an arbitrary number of parties.
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We start with the 2-party variant of the basic scheme presented in Sec-
tion 3.2. The expected run is as follows:

A S B
◦
νk��

◦ ◦KAS koo KBS k // ◦

While we take it as primitive for simplicity, it is easy to define a transformation
that produces an n-party variant of that basic protocol in Section 3.1 for any
given number n.8

The roles of this protocol are defined next. Notice that the actions of A and
B are totally symmetric at this stage (only A’s role is shown).

KD0
2 server[S;A;B] = ν k ; 〈KAS k : S → A〉 ⊗ 〈KBS k : S → B〉

KD0
2 client[A;S,B] = (KAS k : S → A)

Next we take the point of view of a client (A for example) and follow our foot-
prints from Section 3.1 to derive the property characterizing her observations:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
(KAS k)A

⇒ (ν k)S <

[
〈KAS k : S → A〉S<
〈KBS k : S → B〉S<

]
< (KAS k)A

Next we use the discharging transformation DC to have A pass the names
of the two clients to S, discharging A and B as parameters in KD0

2 server. The
resulting run is given by:

A S B
◦ A,B // ◦

νk��
◦ ◦KAS koo KBS k // ◦

and the roles by:

KD1
2 server[S] = (A,B : A→ S) ; ν k ;

〈KAS k : S → A〉 ⊗ 〈KBS k : S → B〉
KD1

2 iclient[A;S,B] = 〈A,B : A→ S〉 ; (KAS k : S → A)

KD1
2 rclient[B;S,A] = (KBS k : S → B)

8EdNote: Cathy wrote “Composing KD1[A,S] with KD1[B,S] yields [KD2]”. I tried to define such a
“composition” in a number of ways, but I could not find anything satisfactory.
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Observe that the roles of A and B are not symmetric any more. Note also that
it would make little difference if A transmitted just “B” as her first message
since her name is present in the “from” field of this action.

The properties characterizing A’s and B’s views are derived as in the previ-
ous section. Let us examine them:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS k)A

⇒

 〈A,B〉A
(A,X)S < (ν k)S <

[
〈KAS k : S → A〉S<
〈KXS k : S → X〉S<

] < (KAS k)A

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
< (KBS k)B

⇒ (X,B : X → S)S < (ν k)S <

[
〈KXS k〉S<
〈KBS k〉S<

]
< (KBS k)B

Observe that A has no way to determine whether S transmitted the key k to
B or to some other party X . Indeed, she can only infer that S received a
request for a key involving herself and someX , not necessarilyB. By a similar
argument, B cannot ascertain to whom k was distributed, even if A appears
among the parameters of his role.

This problem is traditionally solved by having S include B’s name into the
message directed to A, and A’s name into B’s message. In our setting, this
is achieved by a transformation CA that inserts a new term into an existing
encryption:

CAm′ [ k m ] , k (m,m′)

This has the effect of cryptographically authenticatingm′ (hence the name CA)
to any party entitled to access the ciphertext. It operates as follows on a prop-
erty derivable to a party receiving this message (we omit additional formulas
that may occur in the antecedant or consequent):

A : uncompromised(k, [A,B]) ∧ ((k m))A
=⇒ 〈〈k m〉〉B< < ((k m))Awww�CAm′

A : uncompromised(k, [A,B]) ∧ ((k (m,m′)))A
=⇒ 〈〈k (m,m′)〉〉B< < ((k (m,m′)))A
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The transformation simply extends to the added component m′ the fact that
a message encrypted with an uncompromised key is authenticated. Note that
B’s honesty is not required as long as k is not compromised.9

By applying this transformation twice (once for A and once for B), S can
inform A and B of whom it created k for. This also allows us to discharge A
as a parameter in B’s role. The expected run is now given by the following
diagram:

A S B
◦ A,B // ◦

νk��
◦ ◦KAS (B,k)oo KBS (A,k) // ◦

while the roles become:

KD2
2 server[S] = (A,B : A→ S) ; ν k ;

〈KAS (B, k) : S → A〉 ⊗ 〈KBS (A, k) : S → B〉
KD2

2 iclient[A;S,B] = 〈A,B : A→ S〉 ; (KAS (B, k) : S → A)

KD2
2 rclient[B;S] = (KBS (A, k) : S → B)

It is easy to see that the application of CA solves the problem outlined earlier.
Indeed, A and B can derive the following properties:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k))A

⇒

 〈A,B〉A
(A,B)S < (ν k)S <

[
〈KAS (B, k)〉S<
〈KBS (A, k)〉S<

] < (KAS (B, k))A

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S < (ν k)S <

[
〈KAS (B, k)〉S<
〈KBS (A, k)〉S<

]
< (KBS (A, k))B

While these formulas are very similar to what we derived for protocol KD1
2, A

andB now know that the key k is intended for the two of them to communicate,
not a third party (assuming, of course that S is honest and that the keys KAS

and KBS are not compromised). Clearly, this correction becomes crucially
important when A and B attempt to use k.

While KD2
2 achieves a minimal form of key distribution (we will soon ex-

tend this basic functionality with additional guarantees), few actual protocols

9EdNote: Collect all transformations, except maybe 1 or 2, in the appendix?
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have this message structure. Indeed, with the exception of recent group proto-
cols [10], nearly all key distribution protocols based on shared keys have the
server send both components KAS (B, k) and KBS (A, k) to one principal,
who then relays the part he does not understand to the other.

Appendix A.0 describes the relay transformation RT that has the ability to
turn KD2

2 into a more common form of key distribution. The resulting run is as
follows:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS (B,k), KBS (A,k)oo

◦ KBS (A,k) // ◦
In this protocol, which we will call KD3

2, S concatenates KAS (B, k) and
KBS(A, k), and sends the resulting message toA, who then forwardsKBS(A, k)
to B. Several academic and industrial protocols, e.g., Kerberos 5, follow this
pattern. The role specification is as follows:

KD3
2 server[S] = (A,B : A→ S) ; ν k ;

〈KAS (B, k), KBS (A, k) : S → A〉
KD3

2 iclient[A;S,B] = 〈A,B : A→ S〉 ; (KAS (B, k),M : S → A) ;
〈M : A→ B〉

KD3
2 rclient[B;S] = (KBS (A, k) : A→ B)

Clearly, the component KBS (A, k) is opaque to A. Hence her role mentions
a generic message M .

Transformation RT alters the properties derivable to A and B in a rather
subtle way. We examine its effect one principal at a time.

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k), M)A < 〈M〉A

⇒

[
〈A,B〉A

(A,B)S < (ν k)S < 〈KAS (B, k), KBS (A, k) 〉S<

]
≤

≤ 〈KAS (B, k), M 〉X< < (KAS (B, k), M )A < 〈M〉A
Compared to the analogous property of KD2

2, A’s receive action contains a
generic M , and the server sends a concatenated message rather than the two
components separately. This has two major implications. We highlighted them
using boxes:

1 While, by the honesty assumption,A knows that S has sentKAS (B, k),
KBS (A, k), she has no means to ascertain that the generic message M
she receives is indeed KBS (A, k).
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2 SinceKAS is uncompromised,A knows that S has originatedKAS(B, k),
but she cannot be sure of who originated the message KAS (B, k),M
she received: hence the variable X for its originator, and the ≤ relation,
a direct result of applying axiom rcv. Indeed an attacker could have re-
placed KBS (A, k) with an arbitrary message in an undetectable way.
Such a behavior has been documented for Kerberos 5 [2].

Additionally, observe that A’s last send has little bearing on the overall prop-
erty and could be dropped without significant consequences (it is the same
underlying reason that makes the property derivable by the server so uninter-
esting).

For similar reasons, B has no way to know who forwarded the message he
receives.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k), KBS (A, k)〉S< <
< 〈KBS (A, k)〉X< < (KBS (A, k))B

Note that if B were able to infer that X is indeed A, he would also reach the
certainty that A knows the key k.

We conclude this section by deriving a popular variant of KD3
2, in whichB’s

component is embedded in A’s rather than concatenated with it. Actual pro-
tocol that follow this approach include NSSK, Denning-Sacco and Kerberos
4.

The transformation EA that produces this modified protocol is similar to
CA:

EA[ (k m), m′ ] , k (m,m′)

It pushes an existing message into an encrypted component it is concatenated
with. The effect of EA over properties is to authenticate m′ in addition to m:

A : uncompromised(k, [A,B]) ∧ ((k m, m′))A
=⇒ 〈〈k m〉〉B< ≤ 〈〈k m, m′〉〉X< < ((k m, m′))Awww�EA

A : uncompromised(k, [A,B]) ∧ ((k (m,m′)))A
=⇒ 〈〈k (m,m′)〉〉B< < ((k (m,m′)))A

Notice the relation 〈〈k m〉〉B< ≤ 〈〈k m, m′〉〉X< before applying the transfor-
mation: it says that B has originated a message containing k m, which may or
may not be k m, m′, and that what B received may have been put together by
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a principal X . Recall that we ran into this issue several times while examining
KD3

2. This transformation removes this source of uncertainty.
Applying EA to KD3

2 yields protocol KD4
2, which has the following expected

run:
A S B
◦ A,B // ◦

νk��
◦
��

◦KAS (B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦

KD4
2 is more formally defined by the following roles:

KD4
2 server[S] = (A,B : A→ S) ; ν k ;

〈KAS (B, k,KBS (A, k)) : S → A〉
KD4

2 iclient[A;S,B] = 〈A,B : A→ S〉 ; (KAS (B, k,M) : S → A) ;
〈M : A→ B〉

KD4
2 rclient[B;S] = (KBS (A, k) : A→ B)

A’s resulting property enhances what she could deduce from KD3
2 with the

certainty that the opaque submessage M she receives is precisely KBS (A, k):

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k,M))A < 〈M〉A

⇒
[

〈A,B〉A
(A,B)S < (ν k)S < 〈KAS (B, k,KBS (A, k))〉S<

]
<

< (KAS (B, k, KBS (A, k) )A = (KAS (B, k, M ))AOO

=

OO
< 〈M〉A

At first sight, B’s view does not significantly differ from what he could infer
in KD3

2:

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k,KBS (A, k))〉S< <
< 〈KBS (A, k)〉X< < (KBS (A, k))B

Indeed, assuming S honest and KBS uncompromised, he can deduce that S
did its part in the protocol, and that some principal X (not necessarily A)
forwarded KBS (A, k) to him.

However, under the additional assumption that KAS is not compromised
either,B can infer that it isAwho forwarded this message to him. In particular,
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this tells B that A knows k.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
uncompromised(KAS , [A,S]) ∧ (KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k,KBS (A, k))〉S< <
< 〈KBS (A, k)〉A< < (KBS (A, k) : X → B)B

Note that the assumption of uncompromised(KAS , [A,S]) would be irrele-
vant in any of B’s previous inferences: only A could decrypt KAS (B, k,
KBS (A, k)) to forward KBS (A, k), hence accessing k. Note also that the
assumption that KAS is uncompromised does not mean that A is bound to be
honest: she could indeed deviate substantially from the protocol, passing in-
formation (but not KAS) to arbitrary parties, but she certainly has decrypted
S’s message and certainly sent out KBS (A, k) (although not necessarily to
B).

While most academic and industrial key distribution protocols based on
shared keys are derived from either KD3

2 or KD4
2, these fragments lack two

important guarantees: recency and key confirmation. Indeed, both KD3
2 and

KD4
2 give the clients A and B assurance that the key k has been generated by

the server for their exclusive communication needs, but they provide no veri-
fiable guarantee that k was generated recently: an old k is more likely to have
been compromised than one produced within a short time frame. None of the
properties in this section binds the generation of k by any event controlled by
the client receiving it. Key confirmation is about a client having some reason to
believe that his counterpart has knowledge of k as well: only KD4

2’s B is able
to gather this type of evidence (under assumptions). In the next sections, we
will follow the development of two known families of protocols and observe
how they address these issues.

4. Derivations of NSSK
This section extends the results we just obtained in the direction of the

Needham-Schroeder shared-key protocol (NSSK) [12]. In Section 4.1, we de-
scribe how a challenge-response exchange is used to guarantee the recency of
the key, but also point out how a partial application of this technique leads
to Denning and Sacco’s classical attack on NSSK [4]. We then show how
Needham and Schroeder’s subsequent fix to the original NSSK [13] essentially
completes the application of nonce-based recency in Section 4.2. Finally, we
address key confirmation as implemented in most protocols in Section 4.3.

4.1 Guaranteeing Recency with Nonces
As mentioned earlier, the core key distribution protocols derived in Section 3

do not guarantee to the clients that the server has generated the key recently.
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Indeed, none of the formulas we have derived for any of our clients bounds the
actions of an honest server so that it follows that the key could not have been
produced at an arbitrary moment in the past. Note that this is not a failure of
honesty: the server may have received a fake request long before our clients felt
any need to communicate; the response could have been cached by a dishonest
agent, who also intercepted the clients’ request and replayed that response in a
timely manner.

A controllable way for a client to ensure that the key is recent is to bracket
its generation between two of its own events. One approach to doing so is us-
ing the challenge-response mechanism: the client issues a fresh challenge at
the time she sends the key distribution request to the server. The server cryp-
tographically binds the response to the challenge and the response to the key
distribution request. We dedicate this section to examining one of the possi-
ble concrete realizations of this idea, adopted in NSSK and other protocols.
A different approach, using time-stamps, will be examined in Section 5 when
analyzing the Kerberos family.

We use a specific instance of the cr axiom from Section 2.5 which sends the
challenge in the clear (the challenge function is the identity) and returns the
response encrypted with an uncompromised shared key: we have used it as an
example in Section 2.5. As a refresher, the run of this protocol is as follows,
where we write the parameters as we will use them:

A S
◦

ν n ��
◦ n // ◦

��
◦ ◦KAS noo

The specific guarantees of this protocol are the following:

A : uncompromised(KAS , [A,S]) ∧
(νn)A < 〈n〉A < (KAS n)A

=⇒ (νn)A < 〈n〉A < ((n))S < 〈〈KAS n〉〉S< < (KAS n)A

The transformation allowing to embed a challenge-response exchange in
another protocol has been extensively discussed in [10]. We present it only
informally here, using protocol KD4

2 as our case study since it is at the core
of NSSK. The following diagram intuitively renders the overall effect of this
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transformation:

A S
◦

ν n ��
◦ n // ◦

��
◦ ◦KAS noo

A S B
◦

◦ A,B // ◦
νk��

◦
��

◦KAS (B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦ MC
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS n,KAS (B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦ MA
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS (n,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦

Intuitively, the transformation MC has the effect of merging two independent
protocols by identifying some sends and receives between the same princi-
pals and fusing them through concatenation. Events that do not involve com-
munication are compounded. Here, the challenge message (n : A → S)
is concatenated with A’s request to S (A,B : A → S) into the message
(n,A,B : A → S). The two responses are processed similarly. The prop-
erties induced by this transformation are little more than what holds of the two
protocols separately. Transformation MA consolidates the two encryptions
with KAS into one. It has a similar binding power to EA from section 3.2.

The resulting protocol includes the first three steps of NSSK (the addition of
key-confirmation will complete it in Section 4.3). We formalize by presenting
its roles.

NSSK0 server[S] = (n,A,B : A→ S) ; ν k ;
〈KAS (n,B, k,KBS (A, k)) : S → A〉

NSSK0 iclient[A;S,B] = ν n ; 〈n,A,B : A→ S〉 ;
(KAS (n,B, k,M) : S → A) ; 〈M : A→ B〉

NSSK0 rclient[B;S] = (KBS (A, k) : A→ B)

B’s role does not change at all from KD4
2, the server’s changes only marginally,

while most changes occur in A’s role.
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It is particularly interesting to compare how the properties derivable to A
and B change from what we obtained for KD4

2. Because A created the nonce
n fresh and it is returned cryptographically authenticated together with the key
k, A can be certain that the server has generated k after her request. The
analogous property for KD4

2 left the relation between the (actual) request and
the generation of the key totally open. Thus, NSSK ensures the recency of the
key to A.

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
(ν n)A < 〈n,A,B〉A < (KAS (n,B, k,M))A

=⇒ (ν n)A < 〈n,A,B〉A < (n,A,B)S < (ν k)S <
< 〈KAS (n,B, k,KBS (A, k))〉S< < (KAS (n,B, k,KBS (A, k))A

We have dropped the last message (〈M〉A) since it does not influence the re-
sulting property.

The guarantees derivable toB are however pretty much the same as in KD4
2:

B gets to deduce that some nonce n has been exchanged from S’s honesty.
However, no event controlled by B necessarily precedes the generation of k.
We use the stronger version, in which KAS is assumed uncompromised.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
uncompromised(KAS , [A,S]) ∧ (KBS (A, k))B

⇒ (n,A,B)S < (ν k)S < 〈KAS (n,B, k,KBS (A, k))〉S< <
< 〈KBS (A, k)〉A< < (KBS (A, k) : X → B)B

Therefore, NSSK does not ensures the recency of the key to B. This is the gist
of Denning and Sacco’s attack on NSSK [4].

4.2 NSSK-fix
A few years after Denning and Sacco pointed out the absence of recency

guarantees for the responder [4], Needham and Schroeder came forth with a
“fix” for their original protocol [13]. This adjustment simply inserts an addi-
tional challenge response, between B and the server, to provide the required
assurance. Minor complications are called for in order to maintain A as the
initiator and avoid message confusion. We will now examine this amended
protocol.
B’s challenge response differs fromA’s in order to avoid confusion. B gen-

erates a nonce nB (for symmetry we renameA’s nonce nA), sends it encrypted
to the responder and expects it back also encrypted, but somehow transformed.
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The expected run is as follows:

S B
◦
ν nB��

◦
��

◦KBS (f(nB))oo

◦ KBS (g(nB)) // ◦

with f and g two different message structures parameterized by nB . The prop-
erties of this exchange, from the point of view of B are typical of a challenge-
response with shared keys:

B : uncompromised(KBS , [B,S]) ∧
(νnB)B < 〈KBS (f(nB))〉B < (KBS (g(nB)))B

=⇒ (νnB)B < 〈KBS (f(nB))〉B <
< ((KBS (f(nB))))S < 〈〈KBS (g(nB))〉〉S< < (KBS (g(nB)))B

The proof is similar to what we saw in Section 2.5.
The specific instance used in NSSK-fix takes f(nB) , (A,nB) and g(nB) ,

(nB), although any functions would do, as long as they are not identical and
they truly depend on nB . NSSK-fix itself is obtained by applying a series of
transformations to NSSK and this challenge-response exchange:

Two applications of the routing transformation RT modify the challenge-
response so that B and S communicate through A.

Similarly to Section 4.1, transformations MC and MA merge this mod-
ified challenge-response and NSSK0, and cryptographically bind B’s
nonce within the the key distribution submessage S intends for B.

Finally, transformation DC discharges A from B’s roles, allowing that
principal to remain the initiator of the final protocol.
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The overall transformation is summarized in the following diagram:

A S B

◦
ν nA ��
◦ nA,A,B // ◦

νk��
◦
��

◦KAS (nA,B,k,K
BS (A,k))oo

◦ KBS (A,k) // ◦

A S B
◦
ν nB��

◦
��

◦KBS(A,nB)oo

◦ KBS nB // ◦
2RT

◦
ν nB��

◦
��

◦KBS(A,nB)oo

◦ KBS(A,nB) // ◦
��

◦
��

◦KBS nBoo

◦ KBS nB // ◦ MC + MA
◦
ν nB��

◦
ν nA ��

◦KBS(A,nB)oo

◦ nA,A,B,K
BS(A,nB) // ◦

νk��
◦
��

◦KAS (nA,B,k,K
BS (A,k,nB))oo

◦ KBS (A,k,nB) // ◦ DC
◦ A // ◦

ν nB��
◦

ν nA ��

◦KBS(A,nB)oo

◦ nA,A,B,K
BS(A,nB) // ◦

νk��
◦
��

◦KAS (nA,B,k,K
BS (A,k,nB))oo

◦ KBS (A,k,nB) // ◦

Observe that the resulting protocol is substantially more complex than NSSK0

(in the upper left corner): it contains two additional steps and one more cryp-
tographic operation. Note that it may be rather complicated to extend this
protocol to an n-party key distribution.
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This protocol differs from NSSK-fix only by the absence of the final key-
confirmation steps. They will be added in Section 4.3. Its roles are given next.

NSSKfix0 server[S] = (nA, A,B,KBS(A,nB) : A→ S) ; ν k ;
〈KAS (nA, B, k,KBS (A, k, nB)) : S → A〉

NSSKfix0 iclient[A;S,B] = 〈A : A→ B〉 ; (M ′ : B → A) ;
ν nA ; 〈nA, A,B,M ′ : A→ S〉 ;
(KAS (nA, B, k,M) : S → A) ; 〈M : A→ B〉

NSSKfix0 rclient[B;S] = (A : A→ B) ; ν nB ; 〈KBS(A,nB) : B → A〉 ;
(KBS (A, k, nB) : A→ B)

We now turn to the properties that each principal can derive. A’s deduction
differ from NSSK0 only by the presence of her two extra actions, and by the
fact that an honest server will correctly interpret the added fields, both in her
request and in its response. In particular, A is perfectly aware that the compo-
nent she forwards to B in her last message (omitted below) has the structure
KBS (A, k, nB) for some value nB . The logical statement is as follows:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
〈A〉A < (M ′)A < (ν nA)A < 〈nA, A,B,M ′〉A <
< (KAS (nA, B, k,M))A

=⇒ 〈A〉A < (M ′)A < (ν nA)A < 〈nA, A,B,M ′〉A <
< (nA, A,B,KBS(A,nB))S < (ν k)S <
< 〈KAS (nA, B, k,KBS (A, k, nB))〉S< <

< (KAS (nA, B, k,KBS (A, k, nB))A

Since A now supposedly receives a message from B, it makes sense to ask
what would be the effect of strengthening the assumptions of this property with
uncompromised(KBS , [B,S]). This brings no advantage since A simply for-
wards B’s first message and has no way to inspect or verify its contents, even
indirectly. The additional assumption that B is honest brings some marginal
additional insight, namely, that B performed its initial three actions (with the
right parameters) before S started processing, but she has no way of ordering
these added events with respect to her own initial actions.

The interesting changes occur from B’s perspective. As in A’s case in
NSSK0, B’s nonce is cryptographically bound to the key k he receives by
protocol’s end. Since an honest server will construct this key only after re-
trieving this nonce from B’s encrypted message, the generation of the key is
sandwiched between two events under B’s control, hence ensuring its recency.
The rest of this property allows him to draw similar conclusions as in NSSK0,
namely that S produced the key, forwarded it to A who learned it and for-
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warded it to B. This is summarized in the following property.

B : uncompromised(KBS , [B,S]) ∧ honest S ∧
uncompromised(KAS , [A,S]) ∧
(A)B < (ν nB)B < 〈KBS (A,nB)〉B < (KBS (A, k, nB))B

⇒ (A)B < (ν nB)B < 〈KBS (A,nB)〉B <
< (nA, A,B,KBS (A,nB))S < (ν k)S <
< 〈KAS (nA, B, k,KBS (A, k, nB))〉S< <
< 〈KBS (A, k, nB)〉A< < (KBS (A, k, nB))B

As in NSSK0, dropping the assumption that KAS is uncompromised simply
implies thatB does not know who has originated the messageKBS (A, k, nB)
and that he cannot be certain that A knows k.

4.3 Key Confirmation
The previous two sections have shown how to extend the core key distribu-

tion protocol KD4
2 in with the recency guarantees of NSSK(-fix). The remain-

ing issue to address is ensuring to both recipients that their counterpart also
knows the new shared key. As we observed, under assumptions, these proto-
cols already guarantee this to B, but A has no means to be sure that B ever
learned k.

In order to make this concept more explicit, we define the predicate has(A,m)
that holds only if principal A has seen term m. Intuitively, this is the case
whenever we know that A has performed an action on m. Here is a partial
definition, incomplete but sufficient for our needs. It could clearly be extended
with additional cases.

has(A,m) ,


(x/K (m,m′))A
〈〈K (m,m′)〉〉A<
(x/mm′)A
〈〈mm′〉〉A<

The first two cases describe situations where m is encrypted with a shared key
K. In the first line,A decrypt a message containingm, thus exposing this term,
in the second she builds such a term for export. The last two cases are similar,
except that m is the key itself. Note that in all cases, the action is known to
have been performed by A. For this reason, there is no need to assume the
key to be uncompromised. It is a simple exercise to verify that the proposition
has(X, k) holds in exactly the three situations below, with respect to all the
formulas we have derived in this paper:

1 X = S, i.e., the server S who generated k knows k.

2 X is the observer of the formula, obviously.
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3 X = A, the observer is B, the key distribution protocol is a descendent
of KD4

2 (i.e., S sends k toB cryptographically embedded in the message
for A), and the key KAS is assumed to be uncompromised.

In particular, it has never been the case that has(B, k) from the point of view
of A.

Since k is now a shared secret between A and B (supposedly), the easiest
way to provide the missing guarantee is for B to send A a pre-agreed message
encrypted with k. Consider the following protocol fragment:

A B
◦ ◦kmoo

where m is arbitrary. The two simple roles are as follows:

enc to[A;B, k,m] = (k,m : B → A)

enc from[B;A, k,m] = 〈k,m : B → A〉

B is unable to infer anything interesting from his observations since he never
receives anything from A. On the other hand, under the assumption that k is
uncompromised, A deduces that it is B who sent this message:

A : uncompromised(k, [A,B]) (km)A
=⇒ 〈km〉B< < (km)A

Notice that, in this formula, the proposition has(A, k) now holds.
At this point, we can simply use the extending transformation XT (which

simply adds an action at the end of a protocol) and, by a number of applications
of the discharging transformation DC, we can augment NSSK0 and NSSKfix0

with a send action intended for B to confirm to A that he knows the key. The
message m can be arbitrary, for example A,B. The resulting run in the case
of (the shorter) NSSK is as follows:

A S B
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS (n,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦
��

◦ ◦k (A,B)oo
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Let us call this protocol NSSK1. A’s observations lead her to conclude:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
uncompromised(k, [A,B] ∧

(ν n)A < 〈n,A,B〉A < (KAS (n,B, k,M))A <
< 〈M〉A < (k (A,B))A

=⇒ (ν n)A < 〈n,A,B〉A <
< (n,A,B)S < (ν k)S < 〈KAS (n,B, k,KBS (A, k))〉S< <

< (KAS (n,B, k,KBS (A, k))A <

< 〈KBS (A, k)〉A < (KBS (A, k))B < 〈k (A,B)〉B< < (k (A,B))A

We have highlighted the additions with respect to NSSK0 (see Section 4.1) by
enclosing them in boxes. Recall that we had omitted the then trailing 〈M〉A
and 〈KBS (A, k)〉A since they did not add substantial information. Now they
clearly do, as they allow A to infer that B has received this message and orig-
inated k (A,B). It is easy to verify that within this formula, has(B, k) holds,
which achieves our goal.

The last addition, uncompromised(k, [A,B]), deserves some discussion.
Clearly, we need to know that k is uncompromised to infer anything useful
involving it. However, most formal systems would derive this fact rather than
assume it. This may be where the strict separation between authentication and
secrecy is most evident in this work. Recall that our logical system is just
powerful enough to reason about the order of actions, the structure underlying
authentication. In particular it does not embed the closed-world assumption,
nor the induction principles to reason about it. Deriving that k must indeed
be secret would rely on such devices. We intend to develop the secrecy facet
of this logic in future work. The assumption uncompromised(k, [A,B]) is an
interface to this future extension.

Applying the above extension to NSSKfix0 yields NSSKfix1. This protocol
has then the typical properties of a key distribution protocol: both clients re-
ceive assurance that the key has been generated by the expected server, that
this key is controllably recent, and that they both know the key. However, the
actual NSSK-fix is different: B encrypts a new nonce with k and sends it to
A, and expect this same nonce back from A, transformed in a predictable way.
We will now analyze what additional properties are achieved by doing so. For
the sake of succinctness, we operate on NSSK1, which differs from the origi-
nal NSSK in precisely the same way as NSSKfix1 is different from NSSK-fix.
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Here is the expected run of NSSK:

A S B
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦KAS (n,B,k,KBS (A,k))oo

◦ KBS (A,k) // ◦
ν n′��

◦
��

◦k n′oo

◦ k (n′+1) // ◦

First, notice that having A send something encrypted with k back to B does
not produce any new knowledge (besides the obvious, i.e., that a new message
has been transmitted). It does make the hypothesis that KAS was uncompro-
mised (which ultimately was the reason why B could conclude that A had
knowledge of k) unnecessary, but the gain is rather slim: a compromised KAS

immediately allows compromising k. These two propositions are however dis-
tinct in our logic since we never derive an uncompromised fact.

It should however be observed that, from the point of view of B, the last
two messages NSSK implement a challenge-response exchange: B generates
the nonce n′, sends it to A encrypted (with k), and expected it back from her
transformed. By doing so, B ascertains that A in indeed alive at this particular
point of the protocol. Note that B could repeat this same exchange an arbi-
trary number of times (each with a new nonce) and obtain the same guarantee:
that A was recently alive. If B’s challenges include a request for a service
(e.g., retrieving a file) and A’s responses embed an outcome for this service
(e.g., the file itself, or an error message), this protocol implements a crude (and
rather lopsided) single-authentication, repeated-request client-server mecha-
nism: NSSK0 realizes the initial authentication and key distribution, the added
challenge-response forms the basis of each instance of a subsequent client-
server exchange, protected by the key obtained in the first phase. This in-
terpretation of NSSK is clearly not realistic since it implies that the service
provider (A) initiates the exchange while the client (B) just gets to issues the
requests for service. However, we will see in Section 5 that a nearly identical
mechanism is used in Kerberos to support repeated service requests based on
a single initial key distribution.

In summary, our analysis shows that NSSK-fix achieves key distribution
with recency guarantees and key confirmation for both parties. NSSK provides
recency assurance only to the initiator. Our work also shows that the same
guarantees are also supported by simpler protocols that drop the last message
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and rely on any pre-arranged message instead of the final nonce. How they
stand now, both NSSK and NSSK-fix have a flavor of repeated client-server
protocols with the initiator and responder roles inverted.

5. Derivations of Kerberos
Kerberos is a complex and versatile protocol that has been the subject of

intense scrutiny over the years [14, 15]. In this section, we will apply the meth-
ods outlined above to derive the core authentication functionalities of versions
4 and 5 of this protocol. We concentrate on the basic key distribution exchange
of which each version contains two instances. As a preparatory step, we for-
malize the use of timestamps for authentication and apply it to the derivation
of the Denning-Sacco protocol, a core component of Kerberos 4.

5.1 Guaranteeing Recency with Timestamps
Timestamps have a number of applications in cryptographic protocols. In

this section, we examine and formalize their use for the purpose of guaran-
teeing the recency of an already authenticated message. Consider a principal
A receiving a message KAS m from an honest agent S: if the key is uncom-
promised, A can only deduce that S originated this message in the (possibly
distant) past; if however S includes a timestamp t within the encryption and
sends KAS(m, t), A can assess the age of the message and reject it if it falls
outside of her window of validity.10

We formalize this intuition as a transformation TS. We define it by describ-
ing how it operates on a process P , how it consequently alters the representa-
tion of the honesty of the participants, and how their knowledge gets upgraded.

Roles. Given a roles ρ and ρ′ embedding the sending and receiving of
KAS m, respectively, the transformation TS is described as follows:

{
TS[ 〈〈KAS m : S → A〉〉 ] = (τ t) ; 〈〈KAS(m, t) : S → A〉〉

TS[ ((KAS m : S → A)) ] = ((KAS(m, t) : S → A))

Recall that the event (τ t) represents S’s looking up of his current local time
and instantiating t to it.

10This assessment takes into considerations clock skews between hosts, typical network delays, etc.
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Honesty. The honesty formula of both principals is derived from the trans-
formed process. In particular S’s honesty formula is updated as follows:

· · · ≺ 〈〈KAS m : S → A〉〉S< ≺ · · ·www�TS(P )

· · · ≺ (τ t)S ≺ 〈〈KAS(m, t) : S → A〉〉S< ≺ · · ·

A’s honesty is updated similarly (but it will not play any role in the sequel).

Knowledge. More interesting is the description of how TS alters the guaran-
tees that each principal can deduce. Given the particular format of this transfor-
mation (S does not receive a message back), we concentrate on the knowledge
accessible to A.

In the interest of space, we elide the source and destination directives.

A : uncompromised(k, [A,B]) ∧ ((KAS m))A
=⇒ 〈〈KAS m〉〉S< < ((KAS m))Awww�TS(P )

A : uncompromised(k, [A,B]) ∧ honest S ∧ ((KAS(m, t)))A
=⇒ (τ t)A < (τ t)S < 〈〈KAS(m, t)〉〉S< < ((KAS(m, t)))A

The top formula describes how A can extend her knowledge after receiving
KAS m whenever the original protocol guarantees the authenticity of m: note
that, as long as KAS is not compromised, S is not required to be honest. The
bottom lines show the upgraded formula. Recall that the pseudo-event (τ t)
represents the earliest point in A’s local time where she will accept the time t
as valid i.e., “recent enough” in our context. Notice that it is now important
that S is believed to be honest: without this, S could guess an appropriate value
for t rather than looking it up from its clock.

We obtain this formula by homomorphically replacingKASmwithKAS(m, t)
in the derivation of the top formula. The atom (τ t)S comes from the upgraded
honesty axiom. The token (τ t)A represents A’s acceptance of the validity of
t.
We schematically represent this transformation by
the inference rule at right. The dotted arrow links
the pseudo-event (τ) to the beginning of the pro-
tocol in A’s view. This transformation is closely
related to CA from Section 3.2.

A S
◦ ◦KAS(m)oo

TS
τ t ◦ // ◦

τ t��
◦ ◦KAS(m,t)oo
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5.2 The Denning-Sacco Protocol
The Denning-Sacco protocol [4] applies the transformation TS just described

to the basic key distribution protocol with nested encryption KD4
2 where the

authenticated message (m above) is k,X , where k is the newly generated key
and X is either A or B. S applies this transformation twice, adding the same
timestamp next to each key distribution submessage. As a consequence, by the
completion of the protocol, each principal has the certainty that S has gener-
ated k recently. As in KD4

2, because of the nested encryption, B additionally
knows that A has seen k (but A cannot be certain that B ever receives k). This
derivation is summarized as follows:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS(B,k,KBS (A,k))oo

◦ KBS k // ◦
2TS

◦ A,B // ◦
νk
τ t��

◦oo

◦
��

◦KAS(B,k,t,KBS(A,k,t))oo

◦ KBS(A,k,t) // ◦

The Denning-Sacco is therefore characterized by the following roles:

NS server[S] = (A,B : A→ S) ; (ν k ⊗ τ t) ;
〈KAS (B, k, t,KBS (A, k, t)) : S → A〉

NS iclient[A;S,B] = 〈A,B : A→ S〉 ; (KAS (B, k, t,M) : S → A) ;
〈M : A→ B〉

NS rclient[B;S] = (KBS (A, k, t) : A→ B)

The verification of the timestamp t occurs in the implicit match. This is from
this operation that the pseudo-events τ t stem.

As usual, we summarize next the information gained by each principal as
she reaches the end of her run. From the sole observation of her actions and
the honesty of the server, A can reconstruct the whole protocol, save for B’s
reception of her last message:

A : honest S ∧ uncompromised(KAS , [A,S]) ∧
〈A,B〉A < (KAS(B, k, t,M))A

=⇒
[
〈A,B〉A < (A,B)S

(τ t)A

]
<

[
(ν k)S
(τ t)S

]
<

< 〈KAS(B, k, t,KBS(A, k, t))〉S< < (KAS(B, k, t,KBS(A, k, t)))A
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We have elidedA’s final send action as it does not contribute added knowledge.
Note that S’s generation of k is now bounded by τ t, which is under the control
of A.
B’s conclusions merge the recency assurance provided by timestamps with

what he could infer by means of KD4
2, i.e., that S has generated k and that A

has seen it in order to forward the message he receives.

B : honest S ∧ uncompromised(KBS , [B,S]) ∧
∧ uncompromised(KAS , [A,S]) ∧ (KBS(A, k, t))B

=⇒
[
(A,B)S
(τ t)B

]
<

[
(ν k)S
(τ t)S

]
< 〈KAS(B, k, t,KBS(A, k, t))〉S< <

< 〈KBS(A, k, t)〉A< < (KBS(A, k, t))B

Denning and Sacco prominently pointed out in their original paper [4] that
this protocol provides full recency guarantees with a minimum number of mes-
sages.

5.3 Kerberos 4
We will now see that the core authentication functionalities of Kerberos

4 [14] are obtained by simply extending the Denning-Sacco protocol by means
of a key confirmation exchange similar to the way we obtained NSSK(-fix) in
Section 4.3.

Adding key confirmation. In Section 5.2, we observed that, by the proto-
col’s end, B is able to determine that A knows the distributed key k, but that
A has no such certainty. In our first step, we simply use the transformation XT
from Section 4.3 in order for B to acknowledge the receipt of A’s last trans-
mission by sending her some (recognizable) messagem encrypted with k. The
resulting run is as follows:

A S B
◦ A,B // ◦

νk
τ t��

◦
��

◦KAS(B,k,t,KBS(A,k,t))oo

◦ KBS(A,k,t) // ◦
��

◦ ◦k moo

The corresponding protocol is a simple extension of DS.
As in the case of NSSK1, A’s knowledge is extended with the certainty that

B has seen (actually used) k, under the assumption that the master keys are not
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compromised. The following formula makes this intuition precise:

A : uncompromised(KAS , [A,S]) ∧ honest S ∧
uncompromised(k, [A,B]) ∧
〈A,B〉A < (KAS (B, k, t,M))A < 〈M〉A < (km)A

=⇒
[
(A,B)S
(τ t)B

]
<

[
(ν k)S
(τ t)S

]
< 〈KAS(B, k, t,KBS(A, k, t))〉S< <

< 〈KBS (A, k, t)〉A < (KBS (A, k, t))B < 〈km〉B< < (km)A

The other remarks about NSSK1 and NSSKfix1 from Section 4.3 hold here as
well.

Adding repeated authentication. Kerberos was designed as a repeated au-
thentication protocol: each time A presents the ticket KBS(A, k, t), B will
provide some predetermined service (up to an end-date that we can abstractly
think of as a function of t). The protocol we just derived is clearly inadequate
for this purpose as anybody can replay the ticket KBS(A, k, t). B needs to
authenticate that a subsequent request comes from A, and assess that it was
made recently enough. Kerberos 4 realizes these two goals by having A gen-
erate a timestamp tA just prior to issuing a new request, and embedding into it
an authenticator k (A, tA) (any message mentioning tA and encrypted with k
would do). The intended run of the resulting protocol is as follows:

A S B
◦ A,B // ◦

νk
τ t��

◦
τ tA ��

◦KAS(B,k,t,KBS(A,k,t))oo

◦ KBS(A,k,t),k(A,tA) // ◦
��

◦ ◦k m[tA]oo

where the last message is made dependent on tA (although Kerberos does not
always enforce this). Technically, this protocol is obtained by first extending
the third message with the token k A (which is completely redundant at this
point) using transformation MC and then applying the transformation TS to it,
and possibly pushing tA into m. Note that if tA is indeed returned in the last
message, this extension can be seen as a timestamp-based challenge-response.

Observe that, differently from NSSK(-fix), it is the initiator of the protocol
(the client, A) that requests the service provided by the responder (B). Indeed,
A generates the timestamp tA that is included in the authenticator.

Kerberos 4 [14] extends this core protocol with numerous fields primar-
ily meant to negotiate parameters of the resulting authentication: added time-
stamps, options and flags, access control information, etc. For maximum flex-
ibility, Kerberos chains two instances of the core protocol, by which a client
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(A) first obtains a master ticket (TGT) which simplifies the issuance of tickets
for individual services.

5.4 Kerberos 5
As far as authentication is concerned, Kerberos 5, the most recent version

of this protocol [14, 15], differs from Kerberos 4 only by the form of the basic
key distribution mechanism it relies on: while version 4 was built up from
the nested variant KD4

2 , Kerberos 5 starts with the concatenated variant KD3
2.

Given this different starting point, the core protocol is however derived by
applying the exact same steps as in Kerberos 4. It is interesting to examine
them as the conclusions available to the various principals are not the same
throughout.

The derivation of the analogous of the Denning-Sacco protocol is summa-
rized as follows:

A S B
◦ A,B // ◦

νk��
◦
��

◦KAS (B,k), KBS (A,k)oo

◦ KBS (A,k) // ◦
2TS

◦ A,B / / ◦
νk
τ t��

◦oo

◦
��

◦KAS(B,k,t),KBS(A,k,t)oo

◦ KBS(A,k,t) // ◦

The knowledge derivable by A is similar to the Denning-Sacco protocol,
except that she can never be certain that the encrypted component she receives
corresponds to what S sent.

A : honest S ∧ uncompromised(KAS , [A,S]) ∧
〈A,B〉A < (KAS(B, k, t),M)A

=⇒
[
〈A,B〉A < (A,B)S

(τ t)A

]
<

[
(ν k)S
(τ t)S

]
<

< 〈KAS(B, k, t),KBS(A, k, t)〉S< < (KAS(B, k, t),M)A

More interesting is the knowledge inferable by B: differently from the
Denning-Sacco protocol, B cannot reach any conclusion on whether A ever
saw the key k: indeed, the assumption uncompromised(KAS , [A,S]) becomes
irrelevant. B knows that the server sent the appropriate messages and that
some principal X forwarded the correct component to him. This makes B’s
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knowledge very similar to A’s.

B : honest S ∧ uncompromised(KBS , [B,S]) ∧ (KBS(A, k, t))B

=⇒
[
〈A,B〉A < (A,B)S

(τ t)B

]
<

[
(ν k)S
(τ t)S

]
<

< 〈KAS(B, k, t),KBS(A, k, t)〉S< < 〈KBS(A, k, t)〉X <
< (KBS(A, k, t))B

Adding key confirmation. With bothA andB unaware of whether its coun-
terpart has seen k, each party needs to inform the other of its knowledge of
k. We rely on the device already used in Kerberos 4 to accomplish this: A
will concatenate the component k A (any message encrypted with k will do,
but this happens to be the core of the Kerberos authenticator) as she forwards
KBS(A, k, t) to B. As in version 4, B will confirm k with a response k m for
some recognizable m. We obtain the following exchange:

A S B
◦ A,B // ◦

νk
τ t��

◦
��

◦KAS(B,k,t),KBS(A,k,t)oo

◦ KBS(A,k,t),k A // ◦
��

◦ ◦k moo

This protocol fragment is extended to allow repeated authentication using k
exactly as for Kerberos 4: A generates a timestamp tA and includes it in her
authenticator; B optionally returns tA in the last message.

This is the authentication core of Kerberos 5. As in its predecessor, two
instances of this fragment are chained together, and numerous fields add a
great deal of flexibility [14, 15]. It should be noted that, in Kerberos 5, the
timestamp-based recency assessment (using t) is supplemented with a nonce-
based guarantee by which A sends S a nonce n with her initial request and
expects it back within KAS(B, k, t). As we saw in Section 4.1, certain nonce-
based challenge-response exchanges are alternative mechanisms for ensuring
the recency of an action. They do not rely on loosely synchronized clocks, but
generally involve communication overhead (this is whyB’s recency guarantees
do not rely on nonces).

6. Conclusions
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Appendix: Relays and the equivalence of runs
Two processes should be considered indistinguishable if they have the same executable

runs.11 But for processes that run on a network with routers and relays, a run where (x :
A → B)B and 〈t : A → B〉A interact directly, i.e.

p
(x : A→ B)B = 〈t : A → B〉A

is indistinguishable from the runs where of these two actions interact through any number of
relays in the form (x : Y → Z)C ; 〈x : Y → Z〉C , so that

p
(x : A→ B)B = 〈x : Y → Z〉C

and
p

(x : Y → Z)C = 〈t : A→ B〉A.
The consequence of this is that the process0@ 〈t : S → A〉S

⊗
〈u : S → B〉S

1A ;

0@ (x : S → A)A
⊗

(x : S → B)B

1A
can be reasonably viewed as equivalent with0@ 〈t : S → A〉S

⊗
〈u : S → B〉S

1A ;

0@ (x : S → A)A ; (y : S → B)A ; 〈y : S → B〉A
⊗

(x : S → B)B

1A
By bundling the two interactions between S and A, , we get the process

〈t, u : S → A〉S ;

0@ (x, y : S → A)A ; 〈y : S → B〉A
⊗

(x : S → B)B

1A
which is still equivalent with the ones above, but one interaction has been moved from S to A.
This explains the transformation

A S B

◦
νx��

◦ ◦
f(x)oo g(x) // ◦

A S B

◦
νx��

◦ ◦
f(x),g(x)oo

◦
g(x)

// ◦
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